UiO-66膜的制备及其在分离领域中的应用
作者:吴振威, 曾坚贤, 黄小平, 张锐, 冯凡
单位: 湖南科技大学化学化工学院,湖南 湘潭 411201
关键词: 金属-有机框架;UiO-66膜;膜制备;膜应用;分离膜
出版年,卷(期):页码: 2022,42(2):163-174

摘要:
 膜分离是推动节能生产和治理环境污染的有效手段之一。金属-有机框架(MOFs)材料因其具有独特的结构和优异的性能,已成为极具应用价值的分离膜材料,超高稳定性的UiO-66更是在众多MOFs材料中脱颖而出。目前,仅少量文献讨论了UiO-66膜材料的制备和应用,鲜有工作系统报道其在分离领域中的应用。因此,本文首先系统介绍了UiO-66膜的制备方法,进一步阐述了其在气体分离、油水分离、染料去除、重金属去除和海水淡化等领域中的应用,最后对UiO-66膜制备方法和应用前景进行了总结和展望。
 Membrane separation is an effective method to promote energy-saving production and deal with environmental pollution. Since metal-organic frameworks (MOFs) materials have unique structure and excellent performance, they have become extremely valuable membrane materials for separation applications. Especially, UiO-66 with ultra-high stability is outstanding among many MOFs materials. A few reports related to the preparation and application of UiO-66 membrane materials, but relatively few have systematically addressed its separation applications. This review firstly summarizes the various synthesis strategies of UiO-66 membranes, and then provides an overview of the applications in various fields, such as, gas separation, oil-water separation, dye removal, heavy metal removal and seawater desalination. Finally, the preparation methods and application prospects of UiO-66 membranes are prospected.
吴振威 (1997-),男,湖南岳阳人,硕士研究生,主要从事MOF膜的制备及其应用研究

参考文献:
 [1] Sholl D S, Lively R P. Seven chemical separations to change the world [J]. Nature, 2016, 532(7600): 435-437.
[2] Cheng Y D, Wang Z H, Zhao D. Mixed matrix membranes for natural gas upgrading: Current status and opportunities [J]. Ind Eng Chem Res, 2018, 57(12): 4139-4169.
[3] Kumar M, Khan M A, Arafat H A. Recent Developments in the rational fabrication of thin film nanocomposite membranes for water purification and desalination [J]. ACS Omega, 2020, 5(8): 3792-3800.
[4] Dou H Z, Xu M, Wang B Y, et al. Microporous framework membranes for precise molecule/ion separations [J]. Chem Soc Rev, 2021, 50(2): 986-1029.
[5] Zhu J Y, Hou J W, Uliana A, et al. The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes [J]. J Mater Chem A, 2018, 6(9): 3773-3792.
[6] Meek S T, Greathouse J A, Allendorf M D. Metal-organic frameworks: A rapidly growing class of versatile nanoporous materials [J]. Adv Mater, 2011, 23(2): 249-267.
[7] Li J R, Sculley J, Zhou H C. Metal-organic frameworks for separations [J]. Chem Rev, 2012, 112(2): 869-932.
[8] Adil K, Belmabkhout Y, Pillai R S, et al. Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship [J]. Chem Soc Rev, 2017, 46(11): 3402-3430.
[9] Zhou H C, Long J R, Yaghi O M. Introduction to metal-organic frameworks [J]. Chem Rev, 2012, 112(2): 673-674.
[10] Cavka J H, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability [J]. J Am Chem Soc, 2008, 130(42): 13850-13851.
[11] Gomes Silva C, Luz I, Llabres i Xamena F. X, et al. Water stable Zr–benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation[J]. Chem Eur J, 2010, 36 (16): 11133-11138.
[12] DeCoste J. B, Peterson G. W, Schindler B. J, et al. The effect of water adsorption on the structure of the carboxylate containing metal–organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66 [J]. J Mater Chem A, 2013, 38 (1):11922-11932.
[13] 贾明民, 冯艺, 邱健豪, et al. UiO-66的制备、功能化及膜分离研究进展 [J]. 化工进展, 2018, 37(9): 3471-3483.
[14] Liu X L. Metal-organic framework UiO-66 membranes [J]. Front Chem Sci Eng, 2019, 14(2): 216-232.
[15] Feng L, Hou H B, Zhou H. UiO-66 derivatives and their composite membranes for effective proton conduction [J]. Dalton Trans, 2020, 49(47): 17130-17139.
[16] Dong G X, Li H Y, Chen V. Challenges and opportunities for mixed-matrix membranes for gas separation [J]. J Mater Chem A, 2013, 1(15): 4610-4630.
[17] Anjum M W, Vermoortele F, Khan A L, et al. Modulated UiO-66-based mixed-matrix membranes for CO2 separation [J]. ACS Appl Mater Inter, 2015, 7(45): 25193-25201.
[18] Shen J, Liu G P, Huang K, et al. UiO-66-polyether block amide mixed matrix membranes for CO2 separation [J]. J Membr Sci, 2016, 513: 155-165.
[19] Ma L, Svec F, Tan T, et al. Mixed matrix membrane based on cross-linked poly[(ethylene glycol) methacrylate] and metal–organic framework for efficient separation of carbon dioxide and methane [J]. ACS Appl Nano Mater, 2018, 1(6): 2808-2818.
[20] Kim N U, Park B J, Lee J H, et al. High-performance ultrathin mixed-matrix membranes based on an adhesive PGMA-co-POEM comb-like copolymer for CO2 capture [J]. J Mater Chem A, 2019, 7(24): 14723-14731.
[21] Deng Y Y, Wu Y N, Chen G Q, et al. Metal-organic framework membranes: Recent development in the synthesis strategies and their application in oil-water separation [J]. Chem Eng J , 2021,405: 127004.
[22] Betard A, Fischer R A. Metal-organic framework thin films: From fundamentals to applications [J]. Chem Rev, 2012, 112(2): 1055-1083.
[23] Liu X, Demir N K, Wu Z, et al. Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination [J]. J Am Chem Soc, 2015, 137(22): 6999-7002.
[24] Ma D C, Han G, Gao Z F, et al. Continuous UiO-66-type metal–organic framework thin film on polymeric support for organic solvent nanofiltration [J]. ACS Appl Mater Inter, 2019, 11 (48):45290-45300.
[25] Wan L L, Zhou C, Xu K, et al. Synthesis of highly stable UiO-66-NH2 membranes with high ions rejection for seawater desalination [J]. Microporous Mesoporous Mater, 2017, 252: 207-213.
[26] Yao A, Jiao X L, Chen D, et al. Bio-inspired polydopamine-mediated Zr-MOF fabrics for solar photothermal-driven instantaneous detoxification of chemical warfare agent simulants [J]. ACS Appl Mater Inter, 2020, 12(16): 18437-18445.
[27]Bao T, Su Y, Zhang N, et al. Hydrophilic carboxyl cotton for in situ growth of UiO-66 and its application as adsorbents [J]. Ind Eng Chem Res, 2019, 58(44): 20331-20339.
[28] Song L N, Zhao T Y, Yang D Z, et al. Photothermal graphene/UiO-66-NH2 fabrics for ultrafast catalytic degradation of chemical warfare agent simulants [J]. J Colloid Interface Sci, 2020, 393: 122332.
[29] Shekhah O, Wang H, Kowarik S, et al. Step-by-step route for the synthesis of metal-organic frameworks [J]. J Am Chem Soc, 2007, 129(49): 15118-15119.
[30] Falcaro P, Ricco R, Doherty C M, et al. MOF positioning technology and device fabrication [J]. Chem Soc Rev, 2014, 43(16): 5513-5560.
[31] Semrau A L, Wannapaiboon S, Pujari S P, et al. Highly porous nanocrystalline UiO-66 thin films via coordination modulation controlled step-by-step liquid-phase growth [J]. Cryst Growth Des, 2018, 19(3): 1738-1747.
[32] Gao J, Wei W, Yin Y, et al. Continuous ultrathin UiO-66-NH2 coatings on a polymeric substrate synthesized by a layer-by-layer method: A kind of promising membrane for oil-water separation [J]. Nanoscale, 2020, 12(12): 6658-6663.
[33] Yang H, Bright J, Kasani S, et al. Metal–organic framework coated titanium dioxide nanorod array p–n heterojunction photoanode for solar water-splitting [J]. Nano Research, 2018, 12(3): 643-650.
[34] Feng J F, Gao S Y, Shi J L, et al. C-QDs@UiO-66-(COOH)2 composite film via electrophoretic deposition for temperature sensing [J]. Inorg Chem, 2018, 57(5): 2447-2454.
[35] Feng J F, Gao S Y, Liu T F, et al. Preparation of dual-emitting Ln@UiO-66-hybrid films via electrophoretic deposition for ratiometric temperature sensing [J]. ACS Appl Mater Inter, 2018, 10(6): 6014-6023.
[36] Stassen I, Styles M, Van Assche T, et al. Electrochemical film deposition of the zirconium metal–organic framework UiO-66 and application in a miniaturized sorbent trap [J]. Chem Mater, 2015, 27(5): 1801-1807.
[37] Wang Z L, Li N, Zong L, et al. Recent advances in vacuum assisted self-assembly of cellulose nanocrystals [J]. Curr Opin Solid State Mater, 2019, 23(3): 142-148.
[38] Cao J L, Su Y L, Liu Y N, et al. Self-assembled MOF membranes with underwater superoleophobicity for oil/water separation [J]. J Membr Sci, 2018, 566: 268-277.
[39] Fang S Y, Zhang P, Gong J L, et al. Construction of highly water-stable metal-organic framework UiO-66 thin-film composite membrane for dyes and antibiotics separation [J]. Chem Eng J , 2020, 385(页码?).
[40] Weber M, Julbe A, Ayral A, et al. Atomic layer deposition for membranes: Basics, challenges, and opportunities [J]. Chem Mater, 2018, 30(21): 7368-7390.
[41] Lausund K B, Nilsen O. All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition [J]. Nat Commu, 2016, 7(1): 13578.
[42] Lausund K B, Petrovic V, Nilsen O. All-gas-phase synthesis of amino-functionalized UiO-66 thin films [J]. Dalton Trans, 2017, 46(48): 16983-16992.
[43] Liu J X, Woll C. Surface-supported metal-organic framework thin films: Fabrication methods, applications, and challenges [J]. Chem Soc Rev, 2017, 46(19): 5730-5770.
[44] Esfahani M R, Aktij S A, Dabaghian Z, et al. Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications [J]. Sep Purif Technol, 2019, 213: 465-499.
[45] Paseta L, Antorán D, Coronas J, et al. 110th Anniversary: Polyamide/metal–organic framework bilayered thin film composite membranes for the removal of pharmaceutical compounds from water [J]. Ind Eng Chem Res, 2019, 58(10): 4222-4230.
[46] Wang Y, Li X Y, Zhao S F, et al. Thin-film composite membrane with interlayer decorated metal–organic framework UiO-66 toward enhanced forward osmosis performance [J]. Ind Eng Chem Res, 2018, 58(1): 195-206.
[47] Xiao F, Hu X Y, Chen Y B, et al. Porous Zr-based metal-organic frameworks (Zr-MOFs)-incorporated thin-film nanocomposite membrane toward enhanced desalination performance [J]. ACS Appl Mater Inter, 2019, 11(50): 47390-47403.
[48] Zhang X, Zhang Y F, Wang T C, et al. A thin film nanocomposite membrane with pre-immobilized UiO-66-NH2 toward enhanced nanofiltration performance [J]. RSC Adv, 2019, 9(43): 24802-24810
[49] Warfsmann J, Tokay B, Champness N R. Synthesis of MIL-53 thin films by vapour-assisted conversion [J]. CrystEngComm, 2020, 22(6): 1009-1017.
[50] Virmani E, Rotter J M, Mahringer A, et al. On-surface synthesis of highly oriented thin metal-organic framework films through vapor-assisted conversion [J]. J Am Chem Soc, 2018, 140(14): 4812-4819.
[51] Sun Y W, Song C S, Guo X W, et al. Concurrent manipulation of out-of-plane and regional in-plane orientations of NH2-UiO-66 membranes with significantly reduced anisotropic grain boundary and superior H2/CO2 separation performance [J]. ACS Appl Mater Inter, 2020, 12(4): 4494-4500.
[52] Friebe S, Geppert B, Steinbach F, et al. Metal-organic framework UiO-66 layer: A highly oriented membrane with good selectivity and hydrogen permeance [J]. ACS Appl Mater Inter, 2017, 9(14): 12878-12885.
[53] Ashtiani S, Khoshnamvand M, Bouša D ,et al. Surface and interface engineering in CO2-philic based UiO-66-NH2-PEI mixed matrix membranes via covalently bridging PVP for effective hydrogen purification [J]. Int  J  Hydrogen Energy, 2021, 46 (7): 5449-5458.
[54] Jiang Y Z, Liu C, Caro J, et al. A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance [J]. Microporous Mesoporous Mater , 2019, 27 4: 203-211.
[55] Liu B, Li D, Yao J, et al. Improved CO2 separation performance and interfacial affinity of mixed matrix membrane by incorporating UiO-66-PEI@[bmim][Tf2N] particles [J]. Sep  Purif Technol, 2020, 239:116519.
[56] Liu B, Li Z E, Li D, et al. Polyzwitterion-grafted UiO-66-PEI incorporating polyimide membrane for high efficiency CO2/CH4 separation [J]. Sep  Purif  Technol, 2021, 267: 118617.
[57] Zhang X F, Feng Y, Wang Z G, et al. Fabrication of cellulose nanofibrils/UiO-66-NH2 composite membrane for CO2/N2 separation [J]. J Membr Sci, 2018, 568: 10-16.
[58] Yang Z B, Ao D, Guo X Y, et al. Preparation and characterization of small-size amorphous MOF mixed matrix membrane [J]. Sep Purif Technol, 2021, 272: 118860.
[59] Wu F C, Lin L, Liu H O, et al. Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/methyl tert-butyl ether mixtures by secondary growth [J]. J Membr Sci, 2017, 544:342-350.
[60] Jiang H J, Shi W X, Liu Q, et al. Intensification of water/ethanol separation by PVA hybrid membrane with different functional ligand UiO-66-X nanochannels in pervaporation process [J]. Sep Purif Technol, 2021, 256:117802.
[61] Kuzminova A I, Dmitrenko M E, Poloneeva D Y, et al. Sustainable composite pervaporation membranes based on sodium alginate modified by metal organic frameworks for dehydration of isopropanol [J]. J Membr Sci, 2021, 626:119194.
[62] Penkova A V, Kuzminova A I, Dmitrenko M. E, et al. Novel pervaporation mixed matrix membranes based on polyphenylene isophtalamide modified by metal–organic framework UiO-66(NH2)-EDTA for highly efficient methanol isolation [J]. Sep PurifTechnol, 2021, 263:118370.
[63] Li H, Zhu L, Zhang J Q, et al. High-efficiency separation performance of oil-water emulsions of polyacrylonitrile nanofibrous membrane decorated with metal-organic frameworks [J]. Appl Surf Sci, 2019, 476: 61-69.
[64] Zhang X J, Zhao Y X, Mu S J, et al. UiO-66-coated mesh membrane with underwater superoleophobicity for high-efficiency oil-water separation [J]. ACS Appl Mater Inter, 2018, 10(20): 17301-17308.
[65] Yao B J, Jiang W L, Dong Y, et al. Post-synthetic polymerization of UiO-66-NH2 nanoparticles and polyurethane oligomer toward stand-alone membranes for dye removal and separation [J]. Chem Eur J, 2016, 22(30): 10565-10571.
[66] Li J, Gong J L, Zeng G M, et al. Zirconium-based metal organic frameworks loaded on polyurethane foam membrane for simultaneous removal of dyes with different charges [J]. J Colloid Interface Sci, 2018, 527: 267-279.
[67] Gao Z F, Feng Y N, Ma D C, et al. Vapor-phase crosslinked mixed matrix membranes with UiO-66-NH2 for organic solvent nanofiltration [J]. J Membr Sci, 2019, 574: 124-135.
[68] He M L, Wang L, Zhang Z, et al. Stable forward osmosis nanocomposite membrane doped with sulfonated graphene oxide@metal-organic frameworks for heavy metal removal [J]. ACS Appl Mater Inter, 2020, 12(51): 57102-57116.
[69] Wan P, Yuan M X, Yu X L, et al. Arsenate removal by reactive mixed matrix PVDF hollow fiber membranes with UIO-66 metal organic frameworks [J]. Chem Eng J, 2020, 382: 122921.
[70] Zhang M M, Sun Q, Wang Y J, et al. Synthesis of porous UiO-66-NH2-based mixed matrix membranes with high stability, flux and separation selectivity for Ga(III) [J]. Chem Eng J, 2021, 421:129748.
[71] Hua W K, Zhang T H, Wang M, et al. Hierarchically structural PAN/UiO-66-(COOH)2 nanofibrous membranes for effective recovery of terbium(iii) and europium(III) ions and their photoluminescence performances [J]. Chem Eng J , 2019, 370: 729-741.
[72] Liu T Y, Yuan H G, Liu Y Y, et al. Metal-organic framework nanocomposite thin films with interfacial bindings and self-standing robustness for high water flux and enhanced ion selectivity [J]. ACS Nano, 2018, 12(9): 9253-9265.
[73] Ma D C, Han G, Peh S B, et al. Water-stable metal–organic framework UiO-66 for performance enhancement of forward osmosis membranes [J]. Ind Eng Chem Res, 2017, 56(44): 12773-12782.
[74] Ma D C, Peh S B, Han G, et al. Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66: Toward enhancement of water flux and salt rejection [J]. ACS Appl Mater Inter, 2017, 9(8): 7523-7534.
[75] Ni L H, Liao Z P, Chen K, et al. Defect-engineered UiO-66-NH2 modified thin film nanocomposite membrane with enhanced nanofiltration performance [J]. Chem Commun, 2020, 56(60): 8372-8375.
[76] Zhao D L, Yeung W S, Zhao Q P, et al. Thin-film nanocomposite membranes incorporated with UiO-66-NH2 nanoparticles for brackish water and seawater desalination [J]. J Membr Sci, 2020, 604: 118039.
[77] Palomba J M, Credille C V, Kalaj M, et al. High-throughput screening of solid-state catalysts for nerve agent degradation [J]. Chem Commun, 2018, 54(45): 5768-5771.
[78] Dwyer D B, Dugan N, Hoffman N, et al. Chemical protective textiles of UiO-66-integrated PVDF composite fibers with rapid heterogeneous decontamination of toxic organophosphates [J]. ACS Appl Mater Inter, 2018, 10(40): 34585-34591.
[79] Moreton J C, Palomba J M, Cohen S M. Liquid-phase applications of metal–organic framework mixed-matrix membranes prepared from poly(ethylene-co-vinyl acetate) [J]. ACS Appl Polym Mater, 2020, 2(5): 2063-2069.
[80] Kalaj M, Palomba J M, Bentz K C, et al. Multiple functional groups in UiO-66 improve chemical warfare agent simulant degradation [J]. Chem Commun, 2019, 55(37): 5367-5370.
[81] Lee J, Kim E Y, Chang B J, et al. Mixed-matrix membrane reactors for the destruction of toxic chemicals [J]. J Membr Sci, 2020, 605.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号