氧化石墨烯在纳滤膜改性中的应用
作者:温书,张文娟,杜海洋,宋丹,王少坡,张宇峰,张瑛洁,薛正
单位: 1 天津城建大学,水质科学与技术天津市重点实验室,天津 300384; 2 哈尔滨工业大学(威海),山东威海 264209; 3 中国铁路经济规划研究院有限公司,北京 100038
关键词: 氧化石墨烯、纳滤膜、亲水性、膜污染、膜改性
出版年,卷(期):页码: 2022,42(2):190-198

摘要:
 传统超滤膜材料通常具有较强的疏水性,导致制备出的纳滤膜存在水通量较低、膜污染严重等问题,而通过对纳滤膜进行改性可有效解决这些问题。氧化石墨烯(GO)作为一种性能优异的新型碳材料,其表面附着了大量的羟基、羧基以及环氧基等极性基团,将其应用于纳滤膜的改性,可有效提高纳滤膜的亲水性、脱盐率以及膜表面的抗污染性等。本文介绍了利用氧化石墨烯(GO)改性纳滤膜的几种常用方式与应用,探究了GO复合纳滤膜稳定性、亲水性、脱盐率以及抗污染性提高的机理,分析了氧化石墨烯(GO)改性纳滤膜的优势以及存在的问题,为GO复合纳滤膜的发展和应用提供指导。
 Traditional ultrafiltration membrane materials usually have strong hydrophobicity, which leads to the low water flux and serious membrane pollution in the prepared nanofiltration membrane (NF). However, modifying the NF can effectively solve these problems. As a new type of carbon material with excellent performance, the surface of graphene oxide (GO) was attached by a large number of polar groups such as hydroxyl, carboxyl and cyclo-oxygen groups. Application of GO in the modification of NF can effectively improve the hydrophilicity, desalination rate and anti-pollution properties on membrane surface, etc. This paper introduced several common modification methods of NF by GO and application of GO-composite NF, investigated the mechanisms for improving the stability, hydrophilic, desalination rate and anti-fouling properties of GO-composite NF, and analyzed the advantages and existing problems in the GO-composite NF. It provided guidance for the development and application of GO-composite NF.
温书(1996-),男,吉林敦化人,硕士,研究方向为纳滤膜改性研究

参考文献:
 [1] Shannon M A, Bohn P W, Elimelech M, et al. Science and technology for water purification in the coming decades [J]. Nature, 2008, 452(7185): 301-310.
[2] Elimelech M. The global challenge for adequate and safe water [J]. J Water Supply Res T, 2006, 55(1): 3-10.
[3] Lau W J, Ismail A F, Misdan N, et al. A recent progress in thin film composite membrane: A review [J]. Desalination, 2012, 287: 190-199.
[4] Wei X Z, Ong X, Yang J, et al. Structure influence of hyperbranched polyester on structure and properties of synthesized nanofiltration membranes [J]. J  Membr Sci, 2013, 440: 67-76.
[5] Han J N, Yang D L, Zhang S H, et al. Preparation and performance of SPPES/PPES hollow fiber composite nanofiltration membrane with high temperature resistance [J]. Desalination, 2014, 350: 95-101.
[6] Joseph N, Ahmadiannamini P, Jishna P S, et al. 'Up-scaling' potential for polyelectrolyte multilayer membranes [J]. J  Membr Sci, 2015, 492: 271-280.
[7] Xu G R, Liu X Y, Xu J M, et al. High flux nanofiltration membranes based on layer-by-layer assembly modified electrospun nanofibrous substrate [J]. Applied Surface Science, 2018, 434: 573-581.
[8] Ng L Y, Mohammad A W, Leo C P, et al. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review [J]. Desalination, 2013, 308: 15-33.
[9] 张慧娟. 改性氧化石墨烯复合纳滤膜的制备及性能研究 [D]; 浙江工业大学, 2017.
[10] Zhao F Y, An Q F, Ji Y L, et al. A novel type of polyelectrolyte complex/MWCNT hybrid nanofiltration membranes for water softening [J]. J  Membr Sci, 2015, 492: 412-421.
[11] Shao L, Chang X J, Zhang Y L, et al. Graphene oxide cross-linked chitosan nanocomposite membrane [J]. Applied Surface Science, 2013, 280: 989-992.
[12] Gilje S, Han S, Wang M, et al. A chemical route to graphene for device applications [J]. Nano Lett, 2007, 7(11): 3394-3398.
[13] Zhang Z B, Wu J J, Su Y, et al. Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance [J]. Applied Surface Science, 2015, 332: 300-307.
[14] Rao C N R, Sood A K, Subrahmanyam K S, et al. Graphene: The New Two-Dimensional Nanomaterial [J]. Angew Chem Int Ed, 2009, 48(42): 7752-7777.
[15] Sun P Z, Wang K L, Zhu H W. Recent Developments in Graphene-Based Membranes: Structure, Mass-Transport Mechanism and Potential Applications [J]. Advanced Materials, 2016, 28(12): 2287-2310.
[16] Ma L, Qin H, Cheng C, et al. Mussel-inspired self-coating at macro-interface with improved biocompatibility and bioactivity via dopamine grafted heparin-like polymers and heparin [J]. J Mater Chem B, 2014, 2(4): 363-375.
[17] Yanlei H, Bihe Y. Reduced graphene oxide/iron-based metal–organic framework nano-coating created on flexible polyurethane foam by layer-by-layer assembly: Enhanced smoke suppression and oil adsorption property [J]. Materials Letters, 2021, 298: 129974.
[18] Nasir A, Raza A, Tahir M, et al. Free-radical graft polymerization of acrylonitrile on gamma irradiated graphene oxide: Synthesis and characterization [J]. Mater Chem Phys, 2020, 246: 122807.
[19] Fu C L, Dong X B, Wang S J, et al. Synthesis of nanocomposites using xylan and graphite oxide for remediation of cationic dyes in aqueous solutions [J]. Int J Biol Macromol, 2019, 137: 886-894.
[20] Kim K S, Lee K H, Cho K, et al. Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment [J]. J  Membr Sci, 2002, 199(1-2): 135-145.
[21] Kull K R, Steen M L, Fisher E R. Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes [J]. J  Membr Sci, 2005, 246(2): 203-215.
[22] Mohammed Shabin et al. Effect of oxygen plasma treatment on the nanofiltration performance of reduced graphene oxide/cellulose nanofiber composite membranes[J]. Green Chemical Engineering, 2021, 2(1): 122-131.
[23] Jinmiao Z, Shuxuan L, Dechao R, et al. Fabrication of ultra-smooth thin-film composite nanofiltration membrane with enhanced selectivity and permeability on interlayer of hybrid polyvinyl alcohol and graphene oxide [J]. Separation and Purification Technology, 2021, 268: 118649.
[24] Abadikhah H, Kalali E N, Behzadi S, et al. High flux thin film nanocomposite membrane incorporated with functionalized TiO 2 @reduced graphene oxide nanohybrids for organic solvent nanofiltration [J]. Chemical Engineering Science, 2019, 204: 99-109.
[25] Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide [J]. Chem Soc Rev, 2010, 39(1): 228-240.
[26] Hu M, Mi B X. Enabling graphene oxide nanosheets as water separation membranes [J]. Environ Sci Technol, 2013, 47(8): 3715-3723.
[27] Liu H Y, Wang H T, Zhang X W. Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification [J]. Advanced Materials, 2015, 27(2): 249-254.
[28] Han Y, Xu Z, Gao C. Ultrathin Graphene Nanofiltration Membrane for Water Purification [J]. Advanced Functional Materials, 2013, 23(29): 3693-3700.
[29] Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets [J]. Nature, 2007, 446(7131): 60-63.
[30] Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper [J]. Nature, 2007, 448(7152): 457-460.
[31] Li H, Song Z N, Zhang X J, et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation [J]. Science, 2013, 342(6154): 95-98.
[32] Yang M, Zhao C W, Zhang S F, et al. Preparation of graphene oxide modified poly(m-phenylene isophthalamide) nanofiltration membrane with improved water flux and antifouling property [J]. Applied Surface Science, 2017, 394: 149-159.
[33] Robinson J T, Zalalutdinov M, Baldwin J W, et al. Wafer-scale reduced graphene oxide films for nanomechanical devices [J]. Nano Lett, 2008, 8(10): 3441-3445.
[34] Guan K C, Shen J, Liu G P, et al. Spray-evaporation assembled graphene oxide membranes for selective hydrogen transport [J]. Separation and Purification Technology, 2017, 174: 126-135.
[35] Lou Y Y, Liu G P, Liu S N, et al. A facile way to prepare ceramic-supported graphene oxide composite membrane via silane-graft modification [J]. Applied Surface Science, 2014, 307: 631-637.
[36] Liu S B, Zeng T H, Hofmann M, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress [J]. Acs Nano, 2011, 5(9): 6971-6980.
[37] Meng N, Zhao W, Shamsaei E, et al. A low-pressure GO nanofiltration membrane crosslinked via ethylenediamine [J]. J  Membr Sci, 2018, 548: 363-371.
[38] Wang C B, Li Z Y, Chen J X, et al. Structurally stable graphene oxide-based nanofiltration membranes with bioadhesive polydopamine coating [J]. Applied Surface Science, 2018, 427: 1092-1098.
[39] Susanto H, Ulbricht M. Characteristics, performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives [J]. J  Membr Sci, 2009, 327(1-2): 125-135.
[40] Begoin L, Rabiller-Baudry M, Chaufer B, et al. Ageing of PES industrial spiral-wound membranes in acid whey ultrafiltration [J]. Desalination, 2006, 192(1-3): 25-39.
[41] Howe K J, Clark M M. Fouling of microfiltration and ultrafiltration membranes by natural waters [J]. Environ Sci Technol, 2002, 36(16): 3571-3576.
[42] Van Der Bruggen B. Chemical modification of polyethersulfone nanofiltration membranes: A Review [J]. J Appl Polym Sci, 2009, 114(1): 630-642.
[43] Luo M L, Zhao J Q, Tang W, et al. Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles [J]. Applied Surface Science, 2005, 249(1-4): 76-84.
[44] Hu R R, Zhang R J, He Y J, et al. Graphene oxide-in-polymer nanofiltration membranes with enhanced permeability by interfacial polymerization [J]. J  Membr Sci 2018, 564: 813-819.
[45] Igbinigun E, Fennell Y, Malaisamy R, et al. Graphene oxide functionalized polyethersulfone membrane to reduce organic fouling [J]. J  Membr Sci, 2016, 514: 518-526.
[46] Zhang Q, Chen S, Fan X F, et al. A multifunctional graphene-based nanofiltration membrane under photo-assistance for enhanced water treatment based on layer-by-layer sieving [J]. Appl Catal B-Environ, 2018, 224: 204-213.
[47] Yin C C, Ding L L, Wang Z G, et al. CO2-responsive graphene oxide nanofiltration membranes for switchable rejection to cations and anions [J]. J  Membr Sci, 2019, 592: 117374.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号