一步法制备Janus中空纤维膜及其膜蒸馏性能研究
作者:李明,孙扬,王聪,康国栋,付晓燕,于海军,曹义鸣,金焱
单位: 1.中国科学院 大连化学物理研究所,大连 116023;2.中国科学院大学,北京 100049;3.辽宁省大连生态环境监测中心,大连 116023;4. 沃顿科技股份有限公司
关键词: Janus中空纤维膜;直接接触式膜蒸馏;相转化调控;表面偏析
分类号: TQ028.8
出版年,卷(期):页码: 2022,42(3):32-40

摘要:
 利用亲水改性材料与聚偏氟乙烯共混配制铸膜液,通过正丙醇-水两次凝胶调控相转化过程,促进亲水性聚合物向中空纤维内表面偏析,从而改变了膜两侧亲疏性结构,制备出具有非对称浸润性的Janus中空纤维膜,考察亲水性聚合物添加浓度等因素对膜性能的影响。所制备的Janus中空纤维膜外侧水接触角超过135°,内侧水接触角约为55°。在原料液温度60℃,渗透液温度10℃情况下,直接接触式膜蒸馏(DCMD)过程渗透通量约为35 kg/(m2·h)。200 min连续实验中盐截留率始终保持在98%以上。
 The hydrophilic material is blended with polyvinylidene fluoride to prepare the membrane casting solution. By regulating the phase inversion process, promoting the segregation of hydrophilic polymer to the inner surface, changing the structure of both sides of the hollow fiber membrane, the Janus hollow fiber membrane with asymmetric wettability was prepared, and the influence of the concentration of hydrophilic material added in the membrane casting solution was explored. The prepared Janus hollow fiber membrane has an outer side water contact angle of more than 135°, and an inner side water contact angle of about 55°. When the temperature of feed water is 60°C and the permeate water is 10°C, the permeation flux of the direct contact membrane distillation (DCMD) process is about 35 kg/(m2·h), and the salt rejection rate is 99.9%. In the 200-min continuous DCMD experiment, the salt rejection rate of Janus hollow fiber membranes always remained above 98%.

基金项目:
国家自然科学基金面上项目(22178334);中国科学院洁净能源创新研究院合作基金(DNL201909);辽宁省自然科学基金(2019-MS-313);大连市科技创新基金应用基础研究项目(2019J12SN67)

作者简介:
李明(1997-),男,山西晋城人,硕士研究生,从事Janus膜制备和应用的研究,E-mail:liming@dicp.ac.cn

参考文献:
 [1] Cho H, Choi Y, Lee S, et al. Membrane distillation of high salinity wastewater from shale gas extraction: effect of antiscalants [J]. Desalin. Water. Treat, 2016, 57(55): 26718-29.
[2] Bonyadi S, Chung T S. Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic–hydrophobic hollow fiber membranes [J]. J. Membr. Sci, 2007, 306(1-2): 134-46.
[3] Elsayed N A, Barrufet M A, Elhalwagi M M. An integrated approach for incorporating thermal membrane distillation in treating water in heavy oil recovery using SAGD [J]. J. Unconv. Oil Gas Resour, 2015, 12: 6-14.
[4] Singh D, Sirkar K K. Desalination of brine and produced water by direct contact membrane distillation at high temperatures and pressures [J]. J. Membr. Sci, 2012, 389: 380-8.
[5] Lokare O R, Tavakkoli S, Wadekar S, et al. Fouling in direct contact membrane distillation of produced water from unconventional gas extraction [J]. J. Membr. Sci, 2017, 524: 493-501.
[6] Wang H, DIing J, Dai L, et al. Directional water-transfer through fabrics induced by asymmetric wettability [J]. J. Mater.Chem, 2010, 20(37): 7938.
[7] Wu J, Wang N, Wang L, et al. Unidirectional water-penetration composite fibrous film via electrospinning [J]. Soft. Matter, 2012, 8(22): 5996-9.
[8] Zhu X, Hao J, Bao B, et al. Unique ion rectification in hypersaline environment: A high-performance and sustainable power generator system [J]. Sci. Adv, 2018, 4(10): eaau1665.
[9] Li D, Fan Y, Han G, et al. Multibioinspired Janus membranes with superwettable performance for unidirectional transportation and fog collection [J]. Chem. Eng. J, 2021, 404: 126515.
[10] Si Y, Chen L, Yang F, et al. Stable Janus superhydrophilic/hydrophobic nickel foam for directional water transport [J]. J. Colloid Interface Sci, 2018, 509: 346-52.
[11] Yang H-C, Zhong W, Hou J, et al. Janus hollow fiber membrane with a mussel-inspired coating on the lumen surface for direct contact membrane distillation [J]. J. Membr. Sci, 2017, 523: 1-7.
[12] Liu S, Wu C, Hung W S, et al. One-step constructed ultrathin Janus polyamide nanofilms with opposite charges for highly efficient nanofiltration [J]. J. Mater. Chem A, 2017, 5(44): 22988-96.
[13] Chew N G P, Zhao S, Wang R. Recent advances in membrane development for treating surfactant- and oil-containing feed streams via membrane distillation [J]. Adv. Colloid Interface Sci, 2019, 273: 102022.
[14] Hu L, Gao S, Zhu Y, et al. An ultrathin bilayer membrane with asymmetric wettability for pressure responsive oil/water emulsion separation [J]. J. Mater. Chem A, 2015, 3(46): 23477-82.
[15] Zou L, Gusnawan P, Zhang G, et al. Novel Janus composite hollow fiber membrane-based direct contact membrane distillation (DCMD) process for produced water desalination [J]. J. Membr. Sci, 2020, 597: 117756.
[16] Xia Q C, Liu M L, Cao X L, et al. Structure design and applications of dual-layer polymeric membranes [J]. J. Membr. Sci, 2018, 562: 85-111.
[17] Huang H H, Chen G, Liu Y J, et al. Study on PVDF Ultrafiltration Membrane Experiment Preparation and Membrane Formation Mechanism [J]. Aer Adv Eng Res, 2015, 12: 396-403.
[18] Jie X, Cao Y, Qin J-J, et al. Influence of drying method on morphology and properties of asymmetric cellulose hollow fiber membrane [J]. J. Membr. Sci, 2005, 246(2): 157-65.
[19] Yu S, Kang G, Zhu Z, et al. Nafion-PTFE hollow fiber composite membranes for improvement of anti-fouling and anti-wetting properties in vacuum membrane distillation [J]. J. Membr. Sci, 2021, 620: 118915.
[20] Chen Y, Lu K J, Japip S, et al. Can Composite Janus Membranes with an Ultrathin Dense Hydrophilic Layer Resist Wetting in Membrane Distillation? [J]. Environ. Sci. Technol, 2020, 54(19): 12713-22.
[21] Khayet M, Mengual J I, Matsuura T. Porous hydrophobic/hydrophilic composite membranes application in desalination using direct contact membrane distillation [J]. J. Membr. Sci, 2005, 252(1-2): 101-13.
[22] Kuo C Y, Lin H N, Tsai H A, et al. Fabrication of a high hydrophobic PVDF membrane via nonsolvent induced phase separation [J]. Desalination, 2008, 233(1-3): 40-7.
[23] Lin D J, Chang H H, Chen T C, et al. Formation of porous poly(vinylidene fluoride) membranes with symmetric or asymmetric morphology by immersion precipitation in the water/TEP/PVDF system [J]. Eur. Polym. J, 2006, 42(7): 1581-94.
[24] Cheng L P, Young T H, Fang L, et al. Formation of particulate microporous poly(vinylidene fluoride) membranes by isothermal immersion precipitation from the 1-octanol dimethylformamide poly(vinylidene fluoride) system [J]. Polym, 1999, 40(9): 2395-403.
[25] Wenzel R N. Resistance of Solid Surfaces to Wetting by Water [J]. Ind. Eng. Chem, 2002, 28(8): 988-94.
[26] Sun H, Liu S, Ge B, et al. Cellulose nitrate membrane formation via phase separation induced by penetration of nonsolvent from vapor phase [J]. J. Membr. Sci, 2007, 295(1-2): 2-10.
[27] Yin Z, Su B, Nie S, et al. Poly (vinylpyrrolidone-co-acrylonitrile-co-vinylpyrrolidone) modified polyethersulfone hollow fiber membranes with improved blood compatibility [J]. Fiber. Polym, 2012, 13(3): 269-76.
[28] Zhou H, Wang H, Niu H, et al. Superphobicity/philicity Janus Fabrics with Switchable, Spontaneous, Directional Transport Ability to Water and Oil Fluids [J]. Sci. Rep, 2013, 3(1).
[29] Wang H, Zhou H, Yang W, et al. Selective, Spontaneous One-Way Oil-Transport Fabrics and Their Novel Use for Gauging Liquid Surface Tension [J]. ACS Appl. Mater. Interface, 2015, 7(41): 22874-80.
[30] Afasri M, Shon H K, Tijing L D. Janus membranes for membrane distillation: Recent advances and challenges [J]. Adv. Colloid Interface Sci, 2021, 289: 102362.
[31] 李田田, 刘富. 基于相转化全过程的聚合物微孔膜功能化研究进展[J]. 功能高分子学报, 2020, 33(03):210-225.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-80492417/010-80485372 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号