聚偏氟乙烯膜的抗污染研究进展
作者:靳巧如,沈舒苏,张干伟,白仁碧
单位: 1.苏州科技大学 环境科学与工程学院,江苏 苏州 215009; 2.江苏省分离净化材料与技术工程研究中心,江苏 苏州 215009
关键词: 聚偏氟乙烯;膜改性;抗污染机理;研究进展
出版年,卷(期):页码: 2022,42(3):172-179

摘要:
 聚偏氟乙烯(PVDF)由于其良好的成膜性能及化学稳定性常被用于制备水处理膜,但由于其表面具有疏水性容易引起膜污染。为了解决这一问题,人们致力于通过对膜进行适当的改性处理,以达到有效减污,提高膜处理工艺总体效率的目的。本文重点归纳了近年来国内外基于水化层理论、空间位阻理论、界面工程理论、光催化氧化分解理论、抗菌性理论五种抗污染机理对PVDF膜进行改性的研究进展,并对抗污染分离膜的未来发展趋势做出展望。
 Polyvinylidene fluoride (PVDF) is often used to prepare water treatment membranes due to its good film forming performance and chemical stability, but its surface hydrophobicity is easy to cause membrane fouling. In order to solve this problem, experts are committed to the appropriate modification of the membrane to achieve effective fouling reduction and improve the overall efficiency of membrane treatment process. In this paper, the research progress of PVDF membrane modification based on different antifouling mechanisms at home and abroad in recent years was summarized, and the future development trend of antifouling separation membrane was prospected.
靳巧如(1994-),女,河南商水人,硕士,从事PVDF超滤膜制备研究

参考文献:
 [1]Otitoju T A, Ahmad A L, Ooi B S. Polyvinylidene fluoride (PVDF) membrane for oil rejection from oily wastewater: A performance review[J]. J Water Process Eng, 2016, 14:41-59.
[2]. Liu F, Hashim N A, Liu Y, et al. Progress in the production and modification of PVDF membranes[J]. J Membr Sci, 2011. 375(1-2):1-27.
[3] Tummons E, Han Q, Henry J, et al. Membrane fouling by emulsified oil: A review[J]. Sep Purif Technol, 2020, 248:116919.
[4] Alkhatib A, Ayari M A, Hawari A H. Fouling mitigation strategies for different foulants in membrane distillation[J]. Chem Eng Process, 2021, 167:108517.
[5] Kang G, Cao Y. Application and modification of poly(vinylidene fluoride) (PVDF) membranes –A review[J]. J Membr Sci, 2014, 463:145-165.
[6] 侯春光, 文剑平, 庞志广, 等. 耐污染超滤膜的研究进展[J].膜科学与技术,2021,41(02):157-168.
[7] 石卿, 苏延磊, 姜忠义. 材料表面抗蛋白质污染机理研究进展[J].中国科技论文在线,2010,5(03):172-175.
[8] 刘荷英, 何淑漫, 陈楚敏, 等. 阻抗蛋白质吸附材料研究进展[J].化工进展,2009,28(03):429-436.
[9] Chen J, Zhang Z, Han J, et al. A simple one-step method to synthesize PVDF-PG/KH792 membrane for separation of oil-in-water emulsions[J]. J Water Process Eng, 2021, 41:101996.
[10] Wu J, Hou Z, Yu Z, et al, Facile preparation of metal-polyphenol coordination complex coated PVDF membrane for oil/water emulsion separation[J]. Sep Purif Technol, 2021, 258:118022.
[11] Deng W, Fan T, Li Y. In situ biomineralization-constructed superhydrophilic and underwater superoleophobic PVDF-TiO2 membranes for superior antifouling separation of oil-in-water emulsions[J]. J Membr Sci, 2021, 622: 119030.
[12] Silva L, Abdelraheem W, Nadagouda M N, et al. Novel microwave-driven synthesis of hydrophilic polyvinylidene fluoride/polyacrylic acid (PVDF/PAA) membranes and decoration with nano zero-valent-iron (nZVI) for water treatment applications[J]. J Membr Sci, 2021, 620: 118817.
[13] 马超, 刘旸, 顾继友. 两性离子基团改性分离膜的抗污染机理及研究进展[J].高分子通报,2015(08):34-42.
[14] Bui V T, Abdelrasoul A, McMartin D W. Investigation on the stability and antifouling properties of polyvinylidene fluoride (PVDF)-zwitterion mixed matrix membranes (MMMs) using molecular dynamics simulation (MDS)[J]. Comput Mater Sci, 2021, 187: 110079.
[15] Yu Y, Sun N, Wu A, et al. Zwitterion-containing electrolytes with semi–crystalline PVDF-Co-HFP as a matrix for safer lithium-ion batteries[J]. J Mol Liq, 2019, 282:340-346.
[16] Lin Y, Chao C, Wang D, et al. Enhancing the antifouling properties of a PVDF membrane for protein separation by grafting branch-like zwitterions via a novel amphiphilic SMA-HEA linker[J]. J Membr Sci, 2021, 624:119126.
[17] Wang J, He H, Wang M, et al. 3-[[3-(Triethoxysilyl)-propyl] amino] propane-1-sulfonic acid zwitterion grafted polyvinylidene fluoride antifouling membranes for concentrating greywater in direct contact membrane distillation[J]. Desalination, 2019, 455:71-78.
[18] Maghami M, Abdelrasoul A. A comprehensive computational study and simulation of innovative zwitterionic materials for enhanced poly (vinylidene fluoride) membrane hydrophilicity[J]. J Mol Graph Model, 2020, 100: 107656.
[19]. Liu, C, Wang W, Yang B, et al. Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: From mechanisms to mitigation strategies[J].Water Res, 2021. 195: p. 116976.
[20] Agboola O, Sadiku E R, Popoola P, et al. Surface roughness of ternary blends: Polypropylene/chitosan/sisal fiber membranes[J]. Mater Today Proceed, 2021, 38: 2342-2346.
[21] Yang Y, Li Y, Cao L, et al. Electrospun PVDF-SiO2 nanofibrous membranes with enhanced surface roughness for oil-water coalescence separation[J]. Sep Purif Technol, 2021, 269:118726.
[22] Wanke D, Silva A Da, Costa C. Modification of PVDF hydrophobic microfiltration membrane with a layer of electrospun fibers of PVP-co-PMMA: Increased fouling resistance[J]. Chem Eng Res Des, 2021, 171: 268-276.
[23] Yang Y, Li Y, Cao L, et al. Electrospun PVDF-SiO2 nanofibrous membranes with enhanced surface roughness for oil-water coalescence separation[J]. Sep Purif Technol, 2021, 269:118726.
[24] Gao J, Cai M, Nie Z, et al. Superwetting PVDF membrane prepared by in situ extraction of metal ions for highly efficient oil/water mixture and emulsion separation[J]. Sep Purif Technol, 2021, 275:119174.
[25] Shi Y, Huang J, Zeng G, et al. Photocatalytic membrane in water purification: is it stepping closer to be driven by visible light[J]? J Membr Sci, 2019, 584:364-392.
[26] Wang H, Wang J, Xiang X, et al. Preparation of PVDF/CdS/Bi2WO6/ZnO hybrid membrane with enhanced visible-light photocatalytic activity for degrading nitrite in water[J]. Environ Res, 2020, 191: 110036.
[27] Huang J, Hu J, Shi Y, et al. Evaluation of self-cleaning and photocatalytic properties of modified g-C3N4 based PVDF membranes driven by visible light[J]. J Colloid Interface Sci, 2019, 541:356-366.
[28] Pascariu P, Cojocaru C, Samoila P, et al. Novel electrospun membranes based on PVDF fibers embedding lanthanide doped ZnO for adsorption and photocatalytic degradation of dye organic pollutants[J]. Mater Res Bull, 2021, 141:111376.
[29] Luo H, Yan M, Wu Y, et al. Facile synthesis of PVDF photocatalytic membrane based on NCQDs/BiOBr/TiO2 heterojunction for effective removal of tetracycline[J]. Mater Sci Eng B, 2021, 265:114996.
[30] Gao B, Chen W, Liu J, et al. Continuous removal of tetracycline in a photocatalytic membrane reactor (PMR) with ZnIn2S4 as adsorption and photocatalytic coating layer on PVDF membrane[J]. J Photochem Photobio A, 2018, 364:732-739.
[31] Boruah B, Samantaray P K, Madras G, et al. Sustainable photocatalytic water remediation via dual active strongly coupled AgBiO3 on PVDF/PBSA membranes[J]. Chem Eng J, 2020, 394:124777.
[32] Zhang Y, Chen Q, Liu L, et al. Activation of peroxymonosulfate and recycled effluent filtration over cathode membrane CNFs-CoFe2O4/PVDF in a photocatalytic fuel cell for water pollution control[J]. Chem Eng J, 2020, 399:125731.
[33] Zhou J, Zhao Z, Wang Y, et al. BiOCl0.875Br0.125/polydopamine functionalized PVDF membrane for highly efficient visible-light-driven photocatalytic degradation of roxarsone and simultaneous arsenic immobilization[J]. Chem Eng J, 2020, 402:126048.
[34] Erusappan E, Thiripuranthagan S, Radhakrishnan R, et al. Fabrication of mesoporous TiO2/PVDF photocatalytic membranes for efficient photocatalytic degradation of synthetic dyes[J]. J Environ Chem Eng, 2021, 9(4):105776.
[35] Nasrollahi N, Ghalamchi L, Vatanpour V, et al. Photocatalytic-membrane technology: a critical review for membrane fouling mitigation[J]. J Ind Eng Chem, 2021, 93:101-116.
[36] Rani C N, Karthikeyan S, Doss S P A. Photocatalytic ultrafiltration membrane reactors in water and wastewater treatment - A review[J]. Chem Eng Process, 2021, 165:108445.
[37] Rosman N, Salleh W N W, Razali N A M, et al. Ibuprofen removal through photocatalytic filtration using antifouling PVDF-ZnO/Ag2CO3/Ag2O nanocomposite membrane[J]. Mater Today Proceed, 2021, 42:69-74.
[38] Yang C, Wang P, Li J, et al. Photocatalytic PVDF ultrafiltration membrane blended with visible-light responsive Fe(III)-TiO2 catalyst: Degradation kinetics, catalytic performance and reusability[J]. Chem Eng J, 2021, 417:129340.
[39] Chen Z, Chen G, Xie H, et al. Photocatalytic antifouling properties of novel PVDF membranes improved by incorporation of SnO2-GO nanocomposite for water treatment[J]. Sep Purif Technol, 2021, 259:118184.
[40] Yang F, Ding G, Wang J, et al. Self-cleaning, antimicrobial, and antifouling membrane via integrating mesoporous graphitic carbon nitride into polyvinylidene fluoride[J]. J Membr Sci, 2020, 606:118146.
[41] Nasrollahi N, Ghalamchi L, Vatanpour L, et al. Photocatalytic-membrane technology: a critical review for membrane fouling mitigation[J]. J Ind Eng Chem, 2021, 93:101-116.
[42] Zhu J, Hou J, Zhang Y, et al. Polymeric antimicrobial membranes enabled by nanomaterials for water treatment[J]. J Membr Sci, 2018, 550: 173-197.
[43] Sun H, Du Y, Gao C, et al. Pressure-assisted in-depth hydrophilic tailoring of porous membranes achieving high water permeability, excellent fouling resistance and superior antimicrobial ability[J]. J Membr Sci, 2020, 604:118071.
[44] Han D J, Kim S, Heo H J, et al. Poly(vinylidene fluoride)-based film with strong antimicrobial activity[J]. Appl Surf Sci, 2021, 562:150181.
[45] Xuan L, Li J, Tian T, et al. In situ synthesizing silver nanoparticels by bio-derived gallic acid to enhance antimicrobial performance of PVDF membrane[J]. Sep Purif Technol, 2020, 251:117381.
[46] Zheng H, Wang D, Sun X, et al. Surface modified by green synthetic of Cu-MOF-74 to improve the anti-biofouling properties of PVDF membranes[J]. Chem Eng J, 2021, 411:128524.
[47] Samantaray P K, Kumar S, Bose S. ‘Polycation’ modified PVDF based antibacterial and antifouling membranes and ‘point-of-use supports’ for sustainable and effective water decontamination[J]. J Water Process Eng, 2020, 38:101536.
[48] Zhang L, Shi X, Zhao M, et al. Construction of precisely controllable and stable interface bonding Au-TiO2/PVDF composited membrane for biofouling-resistant properties[J]. Surf Interfaces, 2021, 24:101152.
[49] Liao C, Yu P, Zhao P, et al. Preparation and characterization of NaY/PVDF hybrid ultrafiltration membranes containing silver ions as antibacterial materials[J]. Desalination, 2011, 272(1-3):59-65.
[50] Rahimpour A, Jahanshahi M, Rajaeian B, et al. TiO2 entrapped nano-composite PVDF/SPES membranes: Preparation, characterization, antifouling and antibacterial properties[J]. Desalination, 2011, 278(1-3):343-353.
[51] Koh E, Lee Y T. Antimicrobial activity and fouling resistance of a polyvinylidene fluoride (PVDF) hollow-fiber membrane[J]. J Ind Eng Chem, 2017, 47:260-271.
[52] Li X, Pang R, Li J, et al. In situ formation of Ag nanoparticles in PVDF ultrafiltration membrane to mitigate organic and bacterial fouling[J]. Desalination, 2013, 324:48-56.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号