结合胆红素特异性吸附PVC改性微孔膜制备研究
作者:杨 悦,刘娟娟,吕晓龙,马荣花,郑书云,舒桂明,李 可
单位: 1省部共建分离膜与膜过程国家重点实验室,材料科学与工程学院,生物化工研究所,天津工业大学,天津 300387; 2卫生部人工细胞工程技术研究中心,天津市第三中心医院,天津 300170; 3天津市血液灌流技术企业重点实验室,天津市紫波高科技有限公司,天津 300170; 4天津市儿童医院,天津 300074
关键词: PVC;二乙烯三胺;胆红素;血液净化;表面改性
出版年,卷(期):页码: 2022,42(5):86-93

摘要:
 临床上主要采用血液灌流技术治疗高胆红素血症,但血液灌流树脂的血液相容性较差,且由于治疗过程中需要介入血浆分离器,增加了治疗风险和治疗成本。因此本文创新性的研制了一种具有一步“滤过-吸附”双功能的新型聚氯乙烯(PVC)改性膜,通过傅里叶红外光谱、X射线光电子能谱分析和扫描电镜等测试手段研究了膜的化学结构和形貌,测试原膜与改性膜的基本性能,并对原膜与改性膜的胆红素吸附能力,凝血性和溶血性进行了表征。结果表明,二乙烯三胺被成功接枝到膜表面,接枝改性后,改性膜的表面和断面结构未发生明显改变,最大分离孔径为0.27 μm,牛血清白蛋白筛分率达94%,纯水通量达445 L·m-2·h-1,胆红素吸附率达60%,溶血率小于5%,不会引起溶血反应,凝血时间和纤维蛋白原与空白对照组相比无明显变化,不会激起凝血反应。
 The main clinical treatment for hyperbilirubinemia is hemoperfusion technique, but the blood compatibility of hemoperfusion resin is poor. The need of plasma separator during treatment increases the risk of treatment and the cost of treatment. Therefore, this paper creatively developed a new type of polyvinyl chloride (PVC) composite membrane with one-step "filtration adsorption" function. The chemical structure and morphology of the membrane were studied by means of Fourier infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy, the basic properties of the original membrane and composite membrane were tested, and the bilirubin adsorption capacity, coagulability and hemolysis of the original membrane and composite membrane were characterized. The results showed that diethylenetriamine was successfully grafted onto the membrane surface. After grafting modification, the surface and cross-section structure of the composite membrane did not change significantly, and the maximum separation pore size was 0.27 μm, the screening rate of bovine serum albumin was 94%, the pure water flux was 445 L·m-2·h-1, the adsorption rate of bilirubin was 60%. The hemolysis rate was less than 5%, which would not cause hemolysis reaction. There was no significant change in coagulation time and fibrinogen compared with the blank control group, and would not arouse coagulation reaction.
杨悦(1997?),女,天津市,硕士生,研究方向为分离膜制备,E-mail:18222066890@163.com.

参考文献:
 [1] Xie M, Sun J, Chen L. Procion blue H-5R functionalized cellulose membrane with specific removal of bilirubin[J]. Cellulose, 2019, 26(13-14).
[2] Ikegami T, Shirabe K, Yoshizumi T, et al. Primary graft dysfunction after living donor liver transplantation is characterized by delayed functional hyperbilirubinemia[J]. American Journal of Transplantation, 2012, 12(7): 1886-1897.
[3] Ma C, Gao Q, Xia K, et al. Three-dimensionally porous graphene: A high-performance adsorbent for removal of albumin-bonded bilirubin[J]. Colloids & Surfaces B Biointerfaces, 2017, 149: 146-153.
[4] Andreu Y, Ostra M, Ubide C, et al. Study of a fluorometric-enzymatic method for bilirubin based on chemically modified bilirubin-oxidase and multivariate calibration[J]. Talanta, 2002, 57(2): 343-353.
[5] Asano T, Tsuru K, Hayakawa S, et al. Bilirubin adsorption property of sol-gel-derived titania particles for blood purification therapy[J]. Acta Biomaterialia, 2008, 4(4): 1067-1072.
[6] 黄盛玲, 黄德绪, 闫冰, 等. 吸附材料在血液灌流技术中的应用研究进展[J]. 广西医学, 2016, 38(5): 695-697.
[7] Dominik A, Stange J. Similarities, Differences, and potential synergies in the mechanism of action of albumin dialysis using the MARS albumin dialysis device and the cytosorb hemoperfusion device in the treatment of liver failure[J]. Blood Purification, 2021, 50(1): 119-128.
[8] Ma Y, Chen J, Li J, et al. Selective adsorption of bilirubin against albumin to alkylamine functionalized PVA microspheres[J]. Journal of Biomaterials Science Polymer Edition,2019,30(5): 337-354.
[9] Annesini M, Dicarlo C, Piemonte V, et al. Bilirubin and tryptophan adsorption in albumin-containing solutions: I. Equilibrium isotherms on activated carbon[J]. Biochemical Engineering Journal, 2008, 40(2): 205-210.
[10] Piemonte V, Turchetti L, Annesini M. Bilirubin removal from albumin-containing solutions: dynamic adsorption on anionic resin[J]. Asia-Pacific Journal of Chemical Engineering, 2010, 5(5): 708-713.
[11] Yu Y. Adsorbents in blood purification: From lab search to clinical therapy[J]. Chinese Science Bulletin, 2013, 58(35): 4357-4361.
[12] Harm S, Falkenhagen D, Hartmann J. Pore size--A key property for selective toxin removal in blood purification[J]. The International Journal of Artificial Organs. 2014;37(9): 668-678. 
[13] Liu J, Shu G, Lu X, et al. Alginate/HSA double-sided functional PVDF multifunctional composite membrane for bilirubin removal[J]. Separation and Purification Technology, 2020, 252: 117295.
[14] Meijers B, Verhamme P, Nevens F, et al. Major coagulation disturbances during fractionated plasma separation and adsorption[J]. American Journal of Transplantation. 2007;7(9): 2195-2199.
[15] Chen J, Han W, Su R, et al. Non-ionic macroporous polystyrene adsorbents for removal of serum toxins in liver failure by hemoperfusion[J]. Artificial Cells Nanomedicine& Biotechnology. 2016;45(1): 1.
[16] Wang W, Zhang H, Zhang Z, et al. Amine-functionalized PVA-co-PE nanofibrous membrane as affinity membrane with high adsorption capacity for bilirubin[J]. Colloids & Surfaces B Biointerfaces, 2017, 150.
[17] 倪非非, 舒桂明, 李可, 等. 用于胆红素吸附的β-环糊精改性PVDF血浆分离膜的制备[J]. 膜科学与技术, 2018, 38(3): 16-24.
[18] Yuan J, Zhang J, Zang X, et al. Improvement of blood compatibility on cellulose membrane surface by grafting betaines[J]. Colloids & Surfaces B Biointerfaces, 2003, 30(1-2): 147-155.
[19] Voicu S, Condruz R, Mitran V. Sericin covalent immobilization onto cellulose acetate membrane for biomedical applications[J]. ACS Sustainable Chemistry & Engineering , 2016, 4(3): 1-33.
[20] Bowry S, Gatti E, Vienken J. Contribution of polysulfone membranes to the success of convective dialysis therapies[J]. Contributions to Nephrology, 2011, 173: 110-118.
[21] Bruggen B. Chemical modification of polyethersulfone nanofiltration membranes: A review[J]. Journal of Applied Polymer Science, 2009, 114(1): 630-642.
[22] Han R, Zhang S, Yang D, et al. Preparation and characterization of novel copoly (phthalazinone ether sulfone) ultrafiltration membranes with excellent thermal stability[J]. Journal of Membrane Science, 2010, 358(1-2): 142-149.
[23] 马潇, 冯霞. PVC分离膜的改性研究进展[J]. 广州化工, 2019, 47(4): 16-17+20.
[24] Ma R, Lu X, Kong X, et al. A method of controllable positive-charged modification of PVDF-CTFE membrane surface based on C-Cl active site[J]. Journal of Membrane Science, 2021, 620(5): 118936.
[25] 吕晓龙. 中空纤维多孔膜性能评价方法探讨[J] 膜科学与技术, 2011, 31(2): 1-6.
[26] 吕晓龙. 聚偏氟乙烯中空纤维膜纺丝添加剂的研究[J] 天津工业大学学报,  2005, 24(5): 7-10.
[27] 刘娟娟, 吴春凤, 吕晓龙, 等. 聚偏氟乙烯中空纤维血浆分离膜的研制[C]. 2016年中国-欧盟医药生物膜科学与技术研讨会论文集, 2016: 109-113.
[28] Amiji M. Permeability and blood compatibility properties of chitosan-poly(ethylene oxide) blend membranes for haemodialysis[J]. Biomaterials, 1995, 16(8): 593-599.
[29] Xia B. Bilirubin removal by Cibacron Blue F3GA attached nylon-based hydrophilic affinity membrane[J]. Journal of Membrane Science, 2003, 226(1-2): 9-20.
[30] 杨玉林. 材料测试技术与分析方法[M]. 哈尔滨: 哈尔滨工业大学出版社, 2014.
[31] Xiang T, Lu T, Xie Y, et al. Zwitterionic polymer functionalization of polysulfone membrane with improved antifouling property and blood compatibility by combination of ATRP and click chemistry[J]. Acta Biomaterialia, 2016, 40: 162-171.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号