共价有机骨架材料在膜分离领域的应用进展
作者:程 荣,姜培文,夏锦程,张莹莹,陈 冉,郑 祥,徐平平,李 江
单位: 1.中国人民大学环境学院, 北京 100872; 2.浙江建设职业技术学院建筑设备学院,杭州 311231; 3.中国人民大学膜技术创新与产业发展研究中心,北京100872 4.中国蓝星(集团)股份有限公司, 北京 100029
关键词: 共价有机骨架(COFs);膜分离;应用;气体分离;液体分离
出版年,卷(期):页码: 2022,42(5):154-163

摘要:
 共价有机骨架(COFs)材料是一类新型的有机聚合物,由有机分子单体通过共价键聚合而成。COFs具有高孔隙率、高比表面积、孔结构可调等优点,是分离膜材料的理想选择。与传统的聚合物分离膜相比,COF膜具有密度低,通量高,选择性高等优势,近年来已经成为膜领域的研究热点。目前,COF膜的研究和应用正处于快速发展阶段,相关的研究主要集中于COF膜材料的设计和制备,其在膜分离领域应用的最新进展尚缺乏系统梳理。本文结合国内外众多学者的研究成果,总结了COF膜在气体分离、液体分离领域的最新应用进展,对COF膜的发展提出建议和展望,为未来COF膜在膜分离领域的发展和实际应用提供借鉴。
  Covalent organic frameworks (COFs) as a new class of organic polymers, consist of organic molecular monomers polymerized by covalent bonding. With the advantages of high porosity, high specific surface area and adjustable pores, COFs are ideal as separation membrane materials. Compared with traditional polymeric separation membranes, COF membranes have the advantages of low density, high flux and tunable structure, and have attracted large attention in the membrane field in recent years. At present, the research and application of COF membranes are in a rapid development stage, and the research mainly focuses on the design and preparation of COF membrane materials, but the latest progress of application in membrane separation field is not yet systematically sorted out. In this work, we summarize the latest progress of COF membranes in gas separation and liquid separation, and provide an outlook on the future development of COF membranes for the future development and practical application in membrane separation field.
程荣(1981-), 女, 湖北荆州人, 副教授, 博士生导师, 研究方向为环境公共卫生与环境功能材料, E-mail: chengrong@ruc.edu.cn

参考文献:
 [1] Fang M, Montoro C, Semsarilar M. Metal and Covalent Organic Frameworks for Membrane Applications[J]. Membranes, 2020, 10(5):107.
[2] Kandambeth S, Biswal B P, Chaudhari H D, et al. Selective Molecular Sieving in Self-Standing Porous Covalent-Organic-Framework Membranes[J]. Adv. Mater., 2017, 29(2): 1603945.
[3] Dey K, Pal M, Rout K C, et al. Selective Molecular Separation by Interfacially Crystallized Covalent Organic Framework Thin Films[J]. J. Chem. Am. Soc., 2017, 139(37):13083-13091.
[4] Li Y, Wu Q, Guo X, et al. Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving[J]. Nat. Commun., 2020, 11(1):599.
[5] Fan H, Gu J, Meng H, et al. High-Flux Membranes Based on the Covalent Organic Framework COF-LZU1 for Selective Dye Separation by Nanofiltration[J]. Angew. Chem. Int. Ed., 2018, 57(15):4083-4087.
[6] Hao D D, Zhang J N, Lu H, et al. Fabrication of a COF-5 membrane on a functionalized alpha-Al2O3 ceramic support using a microwave irradiation method[J]. ChemComm, 2014, 50(12):1462-1464.
[7] Zhang W X, Zhang L M, Zhao H F, et al. A two-dimensional cationic covalent organic framework membrane for selective molecular sieving[J]. J. Mater. Chem. A, 2018, 6(27):13331-13339.
[8] Xu H, Feng W, Sheng M, et al. Covalent organic frameworks-incorporated thin film composite membranes prepared by interfacial polymerization for efficient CO2 separation[J]. Chin. J. Chem. Eng., 2022, 43:152-160.
[9] Zhang Y, Ma L, Lv Y, et al. Facile manufacture of COF-based mixed matrix membranes for efficient CO2 separation[J]. Chem. Eng. J., 2022, 430(4): 133001.
[10] Wu X, Tian Z, Wang S, et al. Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation[J]. J. Membr. Sci., 2017, 528:2732-2783.
[11] Cheng Y, Ying Y, Zhai L, et al. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation[J]. J. Membr. Sci., 2019, 573:97-106.
[12] Biswal B P, Chaudhari H D, Banerjee R, et al. Chemically Stable Covalent Organic Framework (COF)-Polybenzimidazole Hybrid Membranes:Enhanced Gas Separation through Pore Modulation[J]. Chemistry, 2016, 22(14):4695-4699.
[13] Li G, Zhang K, Tsuru T. Two-Dimensional Covalent Organic Framework (COF) Membranes Fabricated via the Assembly of Exfoliated COF Nanosheets[J]. ACS Appl. Energy Mater., 2017, 9(10):8433-8436.
[14] Fu J R, Das S, Xing G L, et al. Fabrication of COF-MOF Composite Membranes and Their Highly Selective Separation of H-2/CO2[J]. J. Am. Chem. Soc., 2016, 138(24):7673-7680.
[15] Fan H W, Mundstock A, Feldhoff A, et al. Covalent Organic Framework-Covalent Organic Framework Bilayer Membranes for Highly Selective Gas Separation[J]. J. Am. Chem. Soc., 2018, 140(32):10094-10098.
[16] Jiang H, Chen Y, Song S, et al. Confined facilitated transport within covalent organic frameworks for propylene/propane membrane separation[J]. Chem. Eng. J., 2022, 439:135657.
[17] Wang H, Wang D, Liu Y, et al. Potential and design of imine-linked two-dimensional covalent organic framework membranes for Ethane/Methane separation[J]. Appl. Surf. Sci., 2022, 585:152601.
[18] Biswal B P, Kunjattu S H, Kaur T, et al. Transforming covalent organic framework into thin-film composite membranes for hydrocarbon recovery[J]. Sep. Sci. Technol., 2018, 53(11): 1752-1759.
[19] Zhang W, Zhang L, Zhao H, et al. A two-dimensional cationic covalent organic framework membrane for selective molecular sieving[J]. J. Mater. Chem. A, 2018, 6(27):13331-13339.
[20] Kong G, Pang J, Tang Y, et al. Efficient dye nanofiltration of a graphene oxide membrane:Via combination with a covalent organic framework by hot pressing[J]. J. Mater. Chem. A, 2019, 7(42):24301-24310.
[21] Li G, Wang W, Fang Q, et al. Covalent triazine frameworks membrane with highly ordered skeleton nanopores for robust and precise molecule/ion separation[J]. J. Membr. Sci., 2020, 595: 117525.
[22] Qian M, Yan X, Chen Y, et al. Covalent organic framework membrane on electrospun polyvinylidene fluoride substrate with a hydrophilic intermediate layer[J]. J. Colloid Interface Sci., 2022, 622:11-20.
[23] Ye H, Chen D, Li N, et al. Azine-linked covalent organic framework-modified GO membrane for high-efficiency separation of aqueous dyes and salts in wastewater[J]. J. Membr. Sci., 2022, 655: 120546.
[24] Wang M, Guo W, Jiang Z, et al. Reducing active layer thickness of polyamide composite membranes using a covalent organic framework interlayer in interfacial polymerization[J]. Chin. J. Chem. Eng., 2020, 28(4): 1039-1045.
[25] Liu C, Jiang Y, Nalaparaju A, et al. Post-synthesis of a covalent organic framework nanofiltration membrane for highly efficient water treatment[J]. J. Mater. Chem. A, 2019, 7(42):24205-24210.
[26] Xiao A, Shi X, Zhang Z, et al. Secondary growth of bi-layered covalent organic framework nanofilms with offset channels for desalination[J]. J. Membr. Sci., 2021, 624: 119122.
[27] Zheng Y, Shen J, Yuan J, et al. 2D nanosheets seeding layer modulated covalent organic framework membranes for efficient desalination[J]. Desalination, 2022, 532: 115753.
[28] Zhang Z, Yang H, Cao C, et al. Vapor-liquid interfacial polymerization of covalent organic framework membranes for efficient alcohol dehydration[J]. J. Membr. Sci., 2022, 641: 119905.
[29] Cao C, Wang H, Wang M, et al. Conferring efficient alcohol dehydration to covalent organic framework membranes via post-synthetic linker exchange[J]. J. Membr. Sci., 2021, 630: 119319.
[30] Fan H W, Xie Y F, Li J C, et al. Ultra-high selectivity COF-based membranes for biobutanol production[J]. J. Mater. Chem. A, 2018, 6(36):17602-17611.
[31] Liu G H, Jiang Z Y, Yang H, et al. High-efficiency water-selective membranes from the solution-diffusion synergy of calcium alginate layer and covalent organic framework (COF) layer[J]. J. Membr. Sci., 2019, 572:557-566.
[32] Yang H, Wu H, Pan F S, et al. Highly water-permeable and stable hybrid membrane with asymmetric covalent organic framework distribution [J]. J. Membr. Sci., 2016, 520: 583-595. 
[33] Wang M, Zhang P, Liang X, et al. Ultrafast seawater desalination with covalent organic framework membranes[J]. Nat. Sustain., 2022.
[34] Shinde D B, Sheng G, Li X, et al. Crystalline 2D Covalent Organic Framework Membranes for High-Flux Organic Solvent Nanofiltration[J]. J. Am. Chem. Soc., 2018, 140(43):14342-14349.
[35] Li C, Li S, Tian L, et al. Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN)[J]. J. Membr. Sci., 2019, 572:520-531

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号