陶瓷膜的低成本制备及其油水分离应用研究进展
作者:于庆海,朱家明,赵倩倩,龚耿浩
单位: 1.天津工业大学 材料科学与工程学院,分离膜与膜过程国家重点实验室,天津 300387
关键词: 油水分离;陶瓷膜;膜制备;膜污染
出版年,卷(期):页码: 2022,42(5):164-172

摘要:
 无机陶瓷膜因抗污染性能好、机械强度高、耐酸、耐碱、再生性好等优势在含油废水处理方面备受关注。然而,陶瓷膜较高的生产成本和实际应用过程中的膜污染仍限制着其大规模工业化应用。采用低成本陶瓷材料和高效的膜制备技术设计低成本油水分离陶瓷膜可有效降低其生产成本,此外,膜污染控制与评价也是有效推动其工业化应用的重要环节,成为目前油水分离陶瓷膜的研究重点之一。为此,本文从低成本膜材料、高效膜制备工艺及膜污染评价三个方面概述并总结了目前低成本油水分离陶瓷膜的研究进展,并对油水分离陶瓷膜未来的发展方向进行展望,为推动低成本高性能陶瓷膜技术在工业化含油废水处理中的应用提供参考。
  With the advantages, including good anti-fouling performance, high mechanical strength and outstanding resistances to acid, alkali and regeneration, ceramic membranes have been attracted much attention in the treatment of oily wastewater. However, the high production cost of ceramic membrane and its fouling during practical application still limit their large-scale industrial application. The use of low-cost ceramic materials and efficient membrane preparation technology to design low-cost ceramic membranes for oil-water separation can effectively reduce the production cost. In addition, membrane fouling control and evaluation are also an important role to effectively promote its industrial application. This paper summarizes the current research progress of low-cost ceramic membranes for oil-water separation from three aspects: low-cost membrane materials, high-efficiency membrane preparation technology and membrane fouling evaluation, and forecasts the future development direction of oil-water separation ceramic membranes. Provide reference for promoting the application of low-cost high-performance ceramic membrane technology in industrial oily wastewater treatment.
于庆海(1996-),男,安徽阜阳人,硕士生,研究方向为相转化/烧结与原位生长法制备陶瓷膜及其油水分离性能评价

参考文献:
 [1] GUPTA R K, DUNDERDALE G J, ENGLAND M W, et al. Oil/water separation techniques: a review of recent progresses and future directions. [J]. J Mater Chem A. 2017. 5: 16025-16058.
[2] YU L, HAN M, HE F. A review of treating oily wastewater. [J]. Arab J Chem. 2017. 10: 1913-1922.
[3] VARJANI S, JOSHI R, SRIVASTAVA V K, et al. Treatment of wastewater from petroleum industry: current practices and perspectives. [J]. Environ Sci Pollut Res Int. 2020. 27: 27172-27180.
[4] QIU L, SUN Y H, GUO Z G. Designing novel superwetting surfaces for high-efficiency oil-water separation: design principles, opportunities, trends and challenges. [J]. J Mater Chem A. 2020. 8: 16831-16853.
[5] 赵志育, 钟林新, 王栋, 等. 铜污泥基中空纤维尖晶石膜的制备及油水分离性能 [J]. 膜科学与技术, 2022,42:1-7.
[6] SANDHYA RANI S L, KUMAR R V. Insights on applications of low-cost ceramic membranes in wastewater treatment: A mini-review. [J]. Case Studies in Chemical and Environmental Engineering. 2021. 4: 100149.
[7] ABDULLAYEV A, BEKHEET M F, HANAOR D A H, et al. Materials and Applications for Low-Cost Ceramic Membranes. [J]. Membranes-Basel. 2019. 9: 105-127.
[8] EMANI S, UPPALURI R, PURKAIT M K. Cross flow microfiltration of oil–water emulsions using kaolin based low cost ceramic membranes. [J]. Desalination. 2014. 341: 61-71.
[9] EOM J-H, KIM Y-W, YUN S-H, et al. Low-cost clay-based membranes for oily wastewater treatment. [J]. J Ceram Soc Jpn. 2014. 122: 788-794.
[10] SINGH G, BULASARA V K. Preparation of low-cost microfiltration membranes from fly ash. [J]. Desalin Water Treat. 2015. 53: 1204-1212.
[11] SURESH K, PUGAZHENTHI G, UPPALURI R. Fly ash based ceramic microfiltration membranes for oil-water emulsion treatment: Parametric optimization using response surface methodology. [J]. Journal of Water Process Engineering. 2016. 13: 27-43.
[12] ZOU D, FAN W, XU J, et al. One-step engineering of low-cost kaolin/fly ash ceramic membranes for efficient separation of oil-water emulsions. [J]. J Membrane Sci. 2021. 621: 118954.
[13] CHEN M, ZHU L, CHEN J, et al. Spinel-based ceramic membranes coupling solid sludge recycling with oily wastewater treatment. [J]. Water Res. 2020. 169: 115180.
[14] LIU M, ZHU Z, ZHANG Z, et al. Development of highly porous mullite whisker ceramic membranes for oil-in-water separation and resource utilization of coal gangue. [J]. Sep Purif Technol. 2020. 237: 116483.
[15] ZHU L, CHEN M L, DONG Y C, et al. A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in-water emulsion. [J]. Water Res. 2016. 90: 277-285.
[16] SOUZA M, LIRA H, SANTANA L, et al. Preparation and Application in Crude Oil-Water Separation of Clay-Based Membranes. [J]. Materials Research. 2021. 24(4): e20200508.
[17] HUBADILLAH S K, OTHMAN M H D, RAHMAN M A, et al. Preparation and characterization of inexpensive kaolin hollow fibre membrane (KHFM) prepared using phase inversion/sintering technique for the efficient separation of real oily wastewater. [J]. Arab J Chem. 2020. 13: 2349-2367.
[18] HUBADILLAH S K, OTHMAN M H D, MATSUURA T, et al. Fabrications and applications of low cost ceramic membrane from kaolin: A comprehensive review. [J]. Ceram Int. 2018. 44: 4538-4560.
[19] ASIF M B, ZHANG Z H. Ceramic membrane technology for water and wastewater treatment: A critical review of performance, full-scale applications, membrane fouling and prospects. [J]. Chem Eng J. 2021. 418: 129481.
[20] 张利剑, 汪永清, 胡学兵, 等. 中温制备高性能莫来石质陶瓷膜支撑体 [J]. 膜科学与技术, 2020,40:107-112.
[21] CHEN M L, ZHU L, DONG Y C, et al. Waste-to-Resource Strategy To Fabricate Highly Porous Whisker-Structured Mullite Ceramic Membrane for Simulated Oil-in-Water Emulsion Wastewater Treatment. [J]. Acs Sustain Chem Eng. 2016. 4: 2098-2106.
[22] WU H, SUN C, HUANG Y, et al. Treatment of oily wastewaters by highly porous whisker-constructed ceramic membranes: Separation performance and fouling models. [J]. Water Res. 2022. 211: 118042.
[23] 吕相玉, 郭雅妮, 同帜, 等. 烧结制度对粉煤灰-黄土基陶瓷膜支撑体的影响 [J]. 2022,42:60-67+77.
[24] ALOULOU W, ALOULOU H, BEN AMAR R. Low-cost composite ultrafiltration membrane made from TiO2 and nanocomposite clay materials over zeolite support for oily wastewater purification and heavy metals removal. [J]. Desalin Water Treat. 2022. 246: 166-173.
[25] ZOU D, QIU M H, CHEN X F, et al. One step co-sintering process for low-cost fly ash based ceramic microfiltration membrane in oil-in-water emulsion treatment. [J]. Sep Purif Technol. 2019. 210: 511-520.
[26] WANG C, XU G G, GU X Y, et al. Recycling of waste attapulgite to prepare ceramic membranes for efficient oil-in-water emulsion separation. [J]. J Eur Ceram Soc. 2022. 42: 2505-2515.
[27] ZHU L, DONG X F, XU M, et al. Fabrication of mullite ceramic-supported carbon nanotube composite membranes with enhanced performance in direct separation of high-temperature emulsified oil droplets. [J]. J Membrane Sci. 2019. 582: 140-150.
[28] FARD A K, BUKENHOUDT A, JACOBS M, et al. Novel hybrid ceramic/carbon membrane for oil removal. [J]. J Membrane Sci. 2018. 559: 42-53.
[29] ZHU Y, CHEN D. Clay-based nanofibrous membranes reinforced by multi-walled carbon nanotubes. [J]. Ceram Int. 2018. 44: 15873-15879.
[30] ZHANG D S, ABADIKHAH H, WANG J W, et al. beta-SiAlON ceramic membranes modified with SiO2 nanoparticles with high rejection rate in oil-water emulsion separation. [J]. Ceram Int. 2019. 45: 4237-4242.
[31] HU X B, YU Y, ZHOU J E, et al. The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane. [J]. J Membrane Sci. 2015. 476: 200-204.
[32] ZOU D, FAN Y Q. State-of-the-art developments in fabricating ceramic membranes with low energy consumption. [J]. Ceram Int. 2021. 47: 14966-14987.
[33] ZOU D, QIU M H, CHEN X F, et al. One step co-sintering process for low-cost fly ash based ceramic microfiltration membrane in oil-in-water emulsion treatment. [J]. Sep Purif Technol. 2019. 210: 511-520.
[34] ASIF M B, ZHANG Z H. Ceramic membrane technology for water and wastewater treatment: A critical review of performance, full-scale applications, membrane fouling and prospects. [J]. Chem Eng J. 2021. 418.
[35] WANG X L, SUN K, ZHANG G Q, et al. Robust zirconia ceramic membrane with exceptional performance for purifying nano-emulsion oily wastewater. [J]. Water Res. 2022. 208: 117859.
[36] ZOU D, CHEN X F, DRIOLI E, et al. Facile co-sintering process to fabricate sustainable antifouling silver nanoparticles (AgNPs)-enhanced tight ceramic ultrafiltration membranes for protein separation. [J]. J Membrane Sci. 2020. 593.
[37] ZOU D, QIU M H, CHEN X F, et al. One-step preparation of high-performance bilayer alpha-alumina ultrafiltration membranes via co-sintering process. [J]. J Membrane Sci. 2017. 524: 141-150.
[38] 胡学兵, 周健儿, 汪永清, 等. 平均孔径与改性氧化物对α-Al2O3微滤膜油水分离效率的影响 [J]. 硅酸盐学报, 2010,38:1900-1904.
[39] LIN Y, ZOU D, CHEN X, et al. Low temperature sintering preparation of high-permeability TiO2/Ti composite membrane via facile coating method. [J]. Appl Surf Sci. 2015. 349: 8-16.
[40] QIN W, ZHANG Y, WU J Q. Preparation of high-permeance ceramic microfiltration membranes using a pore-sealing method. [J]. Rsc Adv. 2020. 10: 5560-5565.
[41] YIN X Q, GUAN K, GAO P, et al. A preparation method for the highly permeable ceramic microfiltration membrane - precursor film firing method. [J]. Rsc Adv. 2018. 8: 2906-2914.
[42] ZOU D, FAN W, XU J R, et al. One-step engineering of low-cost kaolin/fly ash ceramic membranes for efficient separation of oil-water emulsions. [J]. J Membrane Sci. 2021. 621: 954-967.
[43] 秦伍. 氧化铝陶瓷微滤膜的一步法制备技术 [D]. 华南理工大学, 2016.
[44] ZOU D, KE X B, QIU M H, et al. Design and fabrication of whisker hybrid ceramic membranes with narrow pore size distribution and high permeability via co-sintering process. [J]. Ceram Int. 2018. 44: 21159-21169.
[45] CHEN M L, HEIJMAN S G J, LUITEN-OLIEMAN M W J, et al. Oil-in-water emulsion separation: Fouling of alumina membranes with and without a silicon carbide deposition in constant flux filtration mode. [J]. Water Res. 2022. 216: 118267.
[46] BOUZERARA F, BOULANACER S, HARABI A. Shaping of microfiltration (MF) ZrO2 membranes using a centrifugal casting method. [J]. Ceram Int. 2015. 41: 5159-5163.
[47] DEVILLE S. Freeze-casting of porous ceramics: A review of current achievements and issues. [J]. Adv Eng Mater. 2008. 10: 155-169.
[48] GAUDILLERE C, SERRA J M. Freeze-casting: Fabrication of highly porous and hierarchical ceramic supports for energy applications. [J]. Boletin De La Sociedad Espanola De Ceramica Y Vidrio. 2016. 55: 45-54.
[49] COELHO L L, DI LUCCIO M, HOTZA D, et al. Tailoring asymmetric Al2O3 membranes by combining tape casting and phase inversion. [J]. J Membrane Sci. 2021. 623: 119056.
[50] YU L, KANEZASHI M, NAGASAWA H, et al. Phase inversion/sintering-induced porous ceramic microsheet membranes for high-quality separation of oily wastewater. [J]. J Membrane Sci. 2020. 595: 117477.
[51] HUBADILLAH S K, HARUN Z, OTHMAN M H D, et al. Effect of kaolin particle size and loading on the characteristics of kaolin ceramic support prepared via phase inversion technique. [J]. Journal of Asian Ceramic Societies. 2016. 4: 164-177.
[52] 刘朋超, 马敬红, 杨曙光, 等. 浸渍相转化法制备陶瓷中空纤维膜的研究进展 [J]. 无机材料学报, 2012,27:673-679.
[53] 王子鑫. Al2O3陶瓷膜的制备及其对废水净化效果的研究 [D]. 沈阳工业大学, 2016.
[54] ABDULLAH N, RAHMAN M A, OTHMAN M H D, et al. Preparation and characterization of self-cleaning alumina hollow fiber membrane using the phase inversion and sintering technique. [J]. Ceram Int. 2016. 42: 12312-12322.
[55] TWIBI M F, OTHMAN M H D, HUBADILLAH S K, et al. Development of high strength, porous mullite ceramic hollow fiber membrane for treatment of oily wastewater. [J]. Ceram Int. 2021. 47: 15367-15382.
[56] ABADIKHAH H, ZOU C N, HAO Y Z, et al. Application of asymmetric Si3N4 hollow fiber membrane for cross-flow microfiltration of oily waste water. [J]. J Eur Ceram Soc. 2018. 38: 4384-4394.
[57] ZHANG Z H, AN Q F, JI Y L, et al. Effect of zero shear viscosity of the casting solution on the morphology and permeability of polysulfone membrane prepared via the phase-inversion process. [J]. Desalination. 2010. 260: 43-50.
[58] LEE M, WANG B, WU Z T, et al. Formation of micro-channels in ceramic membranes - Spatial structure, simulation, and potential use in water treatment. [J]. J Membrane Sci. 2015. 483: 1-14.
[59] CHEN M L, ZHU L, CHEN J W, et al. Spinel-based ceramic membranes coupling solid sludge recycling with oily wastewater treatment. [J]. Water Res. 2020. 169.
[60] 杨思民, 王建强, 刘富. 油水分离膜研究进展 [J]. 膜科学与技术, 2019,39:132-141.
[61] FANG J, QIN G T, WEI W, et al. Elaboration of new ceramic membrane from spherical fly ash for microfiltration of rigid particle suspension and oil-in-water emulsion. [J]. Desalination. 2013. 311: 113-126.
[62] NAGASAWA H, OMURA T, ASAI T, et al. Filtration of surfactant-stabilized oil-in-water emulsions with porous ceramic membranes: Effects of membrane pore size and surface charge on fouling behavior. [J]. J Membrane Sci. 2020. 610: 118210.
[63] ALMOJJLY A, JOHNSON D, HILAL N. Investigations of the effect of pore size of ceramic membranes on the pilot-scale removal of oil from oil-water emulsion. [J]. Journal of Water Process Engineering. 2019. 31: 100868.
[64] J. H. Constant pressure blocking filtration laws: application to power-law non-Newtonian fluids. [J]. Transactions of Institutions Chemical Engineering. 1982. 60: 183-187.
[65] MAITI A, SADREZADEH M, THAKURTA S G, et al. Characterization of Boiler Blowdown Water from Steam-Assisted Gravity Drainage and Silica-Organic Coprecipitation during Acidification and Ultrafiltration. [J]. Energ Fuel. 2012. 26: 5604-5612.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号