PFSA/PVDF同轴核壳纤维质子交换膜的性能研究
作者:高敏,余伟明,王小舟,崔福军,贺高红,吴雪梅
单位: 大连理工大学精细化工国家重点实验室,膜科学与技术研究开发中心,大连 116024; 大连理工大学 盘锦产业技术研究院,盘锦 124221
关键词: 质子交换膜;静电纺丝;核壳纤维;燃料电池;质子传输通道
出版年,卷(期):页码: 2022,42(6):94-100

摘要:
 构建具有核壳纤维结构的同轴电纺PFSA/PVDF质子交换膜。同轴纤维中的PFSA壳层纤维提供长程质子传输通道及高电导率,PVDF核层纤维提供强机械性能及抗溶胀性,同轴纤维限域效应将核壳层纤维中PFSA组分粘合,增强了PFSA和PVDF的界面结合。与共混浇铸膜与单轴电纺膜相比,同轴电纺膜在低溶胀条件下,表现出更高的机械强度、质子传导率和电池性能。同轴电纺膜最大拉伸强度达60.8 MPa,相较于单轴电纺膜(39.1 MPa)提高55.5%;其最大拉伸应变为180.2%,比浇铸膜提高了122.5%。80℃下,同轴电纺膜的质子传导率高达206.9 mS/cm,与Nafion 211相当,其峰值功率密度为941.7 mW/cm2,比浇铸膜提高80.9%,比单轴电纺膜(748.9 mW/cm2)提高25.7%。同轴电纺膜也显示出优异的阻气、抗氧化性能。研究表明同轴电纺质子交换膜用于燃料电池具有更好的前景。
 Construction of coaxial electrospun PFSA/PVDF proton exchange membrane with core-shell fiber structure. The PFSA shell fiber in the coaxial fiber provides long-range proton transmission channels and high electrical conductivity, the PVDF core fiber provides strong mechanical properties and anti-swelling properties, and the coaxial fiber confinement effect The PFSA component in the primary core fiber enhances the adhesion The interface of PFSA and PVDF is combined. Compared with the blended cast membrane and the uniaxial electrospun membrane, the coaxial electrospun membrane exhibited higher mechanical strength, proton conductivity and battery performance under low swelling conditions. The maximum tensile strength of the coaxial electrospun membrane is 60.8 MPa, which is 55.5% higher than that of the uniaxial electrospun membrane (39.1 MPa); its maximum tensile strain is 180.2%, which is 122.5% higher than that of the cast membrane. At 80 °C, the proton conductivity of the coaxial electrospun membrane is as high as 206.9 mS/cm, which is comparable to that of Nafion 211, and its peak power density is 941.7 mW/cm2, which is 80.9% higher than that of the cast membrane, and higher than that of the uniaxial electrospun membrane (748.9 mW/cm2) increased by 25.7%. The coaxial electrospun membrane also showed excellent gas barrier and antioxidant properties. Studies have shown that coaxial electrospun proton exchange membranes have better prospects for fuel cells.
高敏(1996-),女,河南商丘人,硕士,质子交换膜及燃料电池

参考文献:
 [1] 林林, 吴睿, 张欣欣. 商业尺寸质子交换膜燃料电池性能实验研究[J]. 哈尔滨工业大学学报, 2011, 43(03): 117-121.
[2] Komala K, Kumar K P, Cherukuri S H C. Storage and non-Storage Methods of Power balancing to counter Uncertainty in Hybrid Microgrids - A review[J]. J Energy Storage, 2021,36(5):102348.
[3] Tang A, Crisci L, Bonville L, et al. An overview of bipolar plates in proton exchange membrane fuel cells[J]. J Renew Sustain Ener, 2021, 13(2): 22701.
[4] Klaus Schmidt-Rohr Q C. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes[J]. Nat Mater, 2007, 7(1): 75-83.
[5] Xing L, Shi W, Su H, et al. Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization[J]. Energy, 2019, 177(3): 445-464.
[6] Lin H, Yu T L, Han F. A Method for Improving Ionic Conductivity of Nafion Membranes and its Application to PEMFC[J]. J Polym Res, 2007, 13(5): 379-385.
[7] Hung T F, Huang J, Chuang H J, et al. Highly efficient single-layer gas diffusion layers for the proton exchange membrane fuel cell[J]. J Power Sources, 2008, 184(1): 165-171.
[8] Karimi M B, Mohammadi F, Hooshyari K. Recent approaches to improve Nafion performance for fuel cell applications: A review[J]. Int J Hydrogen Energ, 2019, 44(54): 28919-28938.
[9] Bin D, Hong C, Joshua S, et al. Super Proton Conductive Nafion Nanofibers: Discovery, Fabrication, Properties, and Fuel Cell Performance[J]. ECS Transactions, 2011, 41(1):136-141.
[10] Ballengee J B, Pintauro P N. Preparation of nanofiber composite proton-exchange membranes from dual fiber electrospun mats[J]. J Membrane Sci, 2013, 44(2): 187-195.
[11] Wei M, Jiang M, Liu X, et al. Graphene-doped electrospun nanofiber membrane electrodes and proton exchange membrane fuel cell performance[J]. J Power Sources, 2016, 32(7): 384-393.
[12] Li L, Su L, Zhang Y. Enhanced performance of supercritical CO2 treated Nafion 212 membranes for direct methanol fuel cells[J]. Int J Hydrogen Energ, 2012, 37(5): 4439-4447.
[13] Lin Y, Yen C, Ma C M, et al. High proton-conducting Nafion®/–SO3H functionalized mesoporous silica composite membranes[J]. J Power Sources, 2007, 171(2): 388-395.
[14] Kim J, Ryu S, Lee J, et al. Preparation of high-conductivity QPPO (quaternary-aminated poly (2,6-dimethyl-1,4-phenyleneoxide)) membranes by electrical treatment[J]. J Membrane Sci, 2018, 553(2): 82-89.
[15] Bazrgar Bajestani M, Mousavi S A. Effect of casting solvent on the characteristics of Nafion/TiO2 nanocomposite membranes for microbial fuel cell application[J]. Int J Hydrogen Energ, 2016, 41(1): 476-482.
[16] Roy T, Wanchoo S K, Pal K. Synergetic proton-conducting effect of sulfonated PEEK-MO2-CNT membranes for PEMFC applications[J]. Ionics, 2021, 27(11): 4859-4873.
[17] Feng M, Huang Y, Cheng T, et al. Synergistic effect of graphene oxide and carbon nanotubes on sulfonated poly(arylene ether nitrile)-based proton conducting membranes[J]. Int J Hydrogen Energ, 2017, 42(12): 8224-8232.
[18] Wu Y, He G, Wu X, et al. Confinement of functionalized graphene oxide in sulfonated poly (ether ether ketone) nanofibers by coaxial electrospinning for polymer electrolyte membranes[J]. Int J Hydrogen Energ, 2019, 44(14): 7494-7504.
[19] Xue J, Xie J, Liu W, et al. Electrospun Nanofibers: New Concepts, Materials, and Applications[J]. Accounts Chem Res, 2017, 50(8): 1976-1987.
[20] Fuqiang L, Baolian Y, Danmin X, et al. Nafion/PTFE composite membranes for fuel cell applications[J]. J Membrane Sci, 2002, 212(1).
[21] Song M, Kim Y, Fenton J M, et al. Chemically-modified Nafion®/poly(vinylidene fluoride) blend ionomers for proton exchange membrane fuel cells[J]. J Power Sources, 2003, 117(1-2): 14-21.
[22] Reneker D H, Yarin A L. Electrospinning jets and polymer nanofibers[J]. Polymer, 2008, 49(10): 2387-2425.
[23] Lei T, Yu L, Zheng G, et al. Electrospinning-induced preferred dipole orientation in PVDF fibers[J]. J Mater Sci, 2015, 50(12): 4342-4347.
[24] Woo Park J, Wycisk R, Lin G, et al. Electrospun Nafion/PVDF single-fiber blended membranes for regenerative H2/Br2 fuel cells[J]. J Membrane Sci, 2017, 541(6): 85-92.
[25] Park J W, Wycisk R, Pintauro P N. Nafion/PVDF nanofiber composite membranes for regenerative hydrogen/bromine fuel cells[J]. J Membrane Sci, 2015, 490(5): 103-112.
[26] Brodt M, Wycisk R, Dale N, et al. Power Output and Durability of Electrospun Fuel Cell Fiber Cathodes with PVDF and Nafion/PVDF Binders[J]. J Electrochem Soc, 2016, 163(5): F401-F410.
[27] Nawn G, Vezzù K, Negro E, et al. Structural analyses of blended Nafion/PVDF electrospun nanofibers[J]. Phys Chem Chem Phys, 2019, 21(20): 10357-10369.
[28] Ballengee J B, Pintauro P N. Composite Fuel Cell Membranes from Dual-Nanofiber Electrospun Mats[J]. Macromolecules, 2011, 44(18): 7307-7314.
[29] Yuan Q, Fu Z, Wang Y, et al. Coaxial electrospun sulfonated poly (ether ether ketone) proton exchange membrane for conductivity-strength balance[J]. J Membrane Sci, 2020, 59(5): 117516.
[30] 李芳冰. 全氟磺酸纳米复合纤维膜材料的制备与表征[D]: 华东理工大学, 2015.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号