紫外诱导超亲水油水分离膜的构建及其性能研究
作者:陈聪,杨紫云,赵博远,刘巧鸿,叶青,安全福
单位: 北京工业大学,环境与生命学部,北京 100124
关键词: 油水分离,超亲水,两性离子聚合物,二苯甲酮,共价交联
出版年,卷(期):页码: 2022,42(6):101-109

摘要:
 使用膜分离处理含油废水过程中,膜表面油污残留是制约应用的关键问题。对基膜表面进行亲水改性是提高分离效率与减少油污吸附的有效方法。本研究利用二苯甲酮光交联反应的特性,在基膜表面共价交联了含有2-甲基丙烯酰氧乙基磷酸胆碱(MPC)的两性离子聚合物,在大幅度提高了膜表面的亲水性的同时确保了亲水层的稳定性。油水分离膜呈现超亲水的性质,纯水通量可提高至4.7×104 L/(m2h),通量恢复率从90.0%提升至99.8%。由于在基膜与两性离子聚合物间构建了稳定的共价键,膜表面的亲水性在强酸与强碱的清洗后依然能够保持,该研究为稳定的油水分离膜表面亲水改性提供了新策略。
 In the process of treating oil wastewater with membrane separation, the oil fouling is the key problem restrict the application. The hydrophilic modification of the membrane surface is an effective strategy to improve the separation efficiency and reduce the oil adsorption. In this study, a copolymer containing 2-methacryloyloxymethylmethyroside (MPC) was covalently crosslinked to the membrane surface using the characteristics of benzophenone photo crosslinking reaction, which greatly improves the surface hydrophilicity of the membrane and ensure the stability of the hydrophilic layer. The modified membrane showed superhydrophilic properties, the pure water flux could be increased to 4.7×104 L / (m2h), and the flux recovery rate was increased from 90.0% to 99.8%. At the same time, due to the stable covalent grafting between the membrane material and the zwitterionic polymer, the hydrophilicity of the membrane surface was maintained after cleaning with strong acids and bases. This work may provide a new strategy for the stable hydrophilic modification of membrane surfaces. 
陈聪(1996-),女,山东省聊城市人,硕士研究生,主要从事膜材料的改性与制备研究

参考文献:
[1] Ge J, Zhao H Y, Zhu H W, et al. Advanced sorbents for oil-spill cleanup: recent advances and future perspectives[J]. Advanced Materials Interfaces, 2016, 28, 10459-10490. 
[2] Peng Y, Liu Y, Dai J, et al. A Sustainable Strategy for Remediation of Oily Sewage: Clean and Safe[J]. Separation and Purification Technology, 2020, 240, 116592.   
[3] Li B, Wu L, Li L, et al. Superwetting Double-Layer Polyester Materials for Effective Removal of Both Insoluble Oils and Soluble Dyes in Water[J]. ACS Applied Materials & Interfaces, 2014, 6(14), 11581-11588.   
[4] Sutton T T, Frank T, Judkins H, et al. As Gulf Oil Extraction Goes Deeper, Who Is at Risk? Community Structure, Distribution, and Connectivity of the Deep-Pelagic Fauna[M]// Scenarios and Responses to Future Deep Oil Spills. 2020, 7-8. 
[5] Schrope M. Deepwater Horizon: A scientist at the centre of the spill [J]. Nature, 2010, 466(7307), 680-684. 
[6] Chiri H, Abascal A J, Castanedo S. Deep oil spill hazard assessment based on spatio-temporal met-ocean patterns[J]. Marine Pollution Bulletin, 2020, 154, 111123. 
[7] Pan Q, Yu H, Daling P S, et al. Fate and behavior of Sanchi oil spill transported by the Kuroshio during January-February 2018[J]. Marine Pollution Bulletin, 2020, 152, 110917. 
[8] Loureiro M L, Loomis J B, Vazquez M X. Economic Valuation of Environmental Damages due to the Prestige Oil Spill in Spain[J]. Environmental and Resource Economics, 2009, 44(4): 537-553.
[9] Zhang S X, Jiang G S, Gao S J, et al. Cupric phosphate nanosheets-wrapped inorganic membranes with superhydrophilic and outstanding anticrude oil-fouling property for oil/water separation[J]. ACS Nano, 2018, 12(1), 795-803.
[10] Lian, Z., Xu, J., Wang, Z., Yu, Z., Weng, Z., Yu, H. Nanosecond Laser-induced Underwater Superoleophobic and Underoil Super-hydrophobic Mesh for Oil/Water Separation[J]. Langmuir, 2018, 34, 2981−2988.
[11] Yang, X., He, Y., Zeng, G. Y., Chen, X., Shi, H., Qing, D. Y., Li, F., Chen, Q., Bio-inspired method for preparation of multiwall carbon nanotubes decorated superhydrophilic poly (vinylidene fluoride) membrane for oil/water emulsion separation[J]. Chem. Eng. J. 2017, 321, 245-256.
[12] Li, R., Li, J., Rao, L., Lin, H., Shen, L., Xu, Y., Chen, J., Inkjet printing of dopamine followed by UV light irradiation to modify mussel-inspired PVDF membrane for efficient oil-water separation[J]. Journal of Membrane Science, 2021, 619(1), 118790.
[12] Liu, Y. Q., Han, D. D., Jiao, Z. Z., Liu, Y., Jiang, H. B., Wu, X.H., Ding, H., Zhang, Y. L., Sun, H. B. Laser-Structured Janus Wire Mesh for Efficient Oil−water Separation[J]. Nanoscale, 2017, 9, 17933−17938.
[13] Liu, M., Wang, S., Wei, Z., Song, Y., Jiang, L. Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface[J]. Advanced Materials Interfaces, 2009, 21, 665−669.
[14] Xue, Z., Wang, S., Lin, L., Chen, L., Liu, M., Feng, L., Jiang, L. A Novel Superhydrophilic and Underwater Superoleophobic Hydrogelcoated Mesh for Oil/Water Separation[J]. Advanced Materials Interfaces, 2011, 23, 4270−4273.
[15] Lian, Z., Xu, J., Wang, Z., Yu, Z., Weng, Z., Yu, H. Nanosecond Laser-induced Underwater Superoleophobic and Underoil Super-hydrophobic Mesh for Oil/Water Separation[J]. Langmuir, 2018, 34, 2981−2988.
[16] Wu, W., Huang, R., Qi, W., Su, R., He, Z. Bioinspired Peptide-coated Superhydrophilic Poly (Vinylidene Fluoride) Membrane for Oil/Water Emulsion Separation[J]. Langmuir, 2018, 34, 6621−662717
[17] Yong, J., Hou, J., Chen, F., Yang, Q., Hou, X. Oil/water separation based on natural materials with super-wettability: recent advances[J]. Phys. Chem, 2018, 20, 25140−25163.
[18] Ma Q, Cheng H, Yu Y, et al. Preparation of superhydrophilic and underwater superoleophobic nanofiber‐based meshes from waste glass for multifunctional oil/water separation[J]. Small, 2017, 13(19), 1700391.
[19] Chae S S, Kim K H, Park J H, et al. Ultrathin photo-oxidized siloxane layer for extreme wettability: anti-fogging layer for spectacles[J]. Advanced Materials Interfaces, 2016, 3(10), 1500725.
[20] He J X, Zhang Z, Xiao C H, et al. High-performance salt-rejecting and cost-effective superhydrophilic porous monolithic polymer foam for solar steam generation[J]. Advanced Materials Interfaces, 2020, 12(14), 16308-16318.
[21] Feng W, Li L, Ueda E, et al. Surface patterning via thiol-yne click chemistry: An extremely fast and versatile approach to superhydrophilic-superhydrophobic micropatterns[J]. Advanced Materials Interfaces, 2014, 1(7), 1400269.
[22] Li F R, Kong W T, Zhao X Z, et al. Multifunctional TiO2-based superoleophobic/superhydrophilic coating for oil-water separation and oil purification[J]. Advanced Materials Interfaces, 2020, 12(15), 18074-18083.
[23] Hou K, Li X, Li Q, et al. Tunable wetting patterns on superhydrophilic/superhydrophobic hybrid surfaces for enhanced dew-harvesting efficacy[J]. Advanced Materials Interfaces, 2020, 7(2), 1901683.
[24] Lin, A. A., Sastri, V. R., Tesoro, G.; Reiser, A.; Eachus, R. On the Crosslinking Mechanism of Benzophenone-containing Polyimides[J]. Macromolecules 1988, 21 (4), 1165−1169.
[25] Park, M.-K., Deng, S., Advincula, R. C. pH-Sensitive Bipolar Ion-Permselective Ultrathin Films[J]. Am. Chem. Soc. 2004, 126 (42), 13723−13731.
[26] Virkar, A., Ling, M.-M.; Locklin, J.; Bao, Z. Oligothiophene Based Organic Semiconductors with Cross-linkable Benzophenone Moieties[J]. Synth. Met. 2008, 158 (21−24), 958−96
[27] Q Liu, P Singha, H Handa, J Locklin . Covalent Grafting of Antifouling Phosphorylcholine-Based Copolymers with Antimicrobial Nitric Oxide Releasing Polymers to Enhance Infection-Resistant Properties of Medical Device Coatings[J]. Langmuir, 2017, (33), 13105−13113 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号