表面接枝TAPI改善聚酰胺纳滤膜的耐氯性能
作者:嵇华忠,韩家凯,钱璟俐,刘大朋,洪耀良
单位: 1.苏州科技大学 环境科学与工程学院,苏州 215009;2.水处理技术与材料协同创新中心,苏州 215009
关键词: 界面聚合,纳滤,表面接枝改性,TAPI,耐氯
出版年,卷(期):页码: 2023,43(2):87-94

摘要:
 为了改善聚酰胺纳滤膜的耐氯性,通过表面改性将2,4,6-三氨基嘧啶(TAPI)接枝到聚酰胺膜表面,利用ATR-FTIR、SEM和接触角测定仪等手段对改性膜进行表征。结果表明,在TAPI最优质量分数为0.3%,最佳反应时间为3min时,改性膜在0.4MPa操作压力下,纯水通量为43.52L·m-2·h-1,对Na2SO4、MgSO4、NaCl和MgCl2的截留率分别为95.30%、88.04%、45.32%、34.04%。pH=3.5、7、10.5值下的氯化实验中,改性膜的通量损失量均比哌嗪基纳滤膜减少20L·m-2·h-1,并且截留率保持稳定在95%以上。
  In order to improve the chlorine resistance of polyamide nanofiltration membrane, 2,4,6-triaminopyrimidine (TAPI) was grafted onto the surface of polyamide membrane by surface modification. The modified membrane was characterized by ATR-FTIR, SEM and contact angle tester. The results showed that when the optimal mass fraction of TAPI was 0.3% and the optimal reaction time was 3 min, the pure water flux of the modified membrane was 43.52 L·m-2·h-1 at 0.4 MPa operating pressure, and the retention rates of Na2SO4, MgSO4, NaCl and MgCl2 were 95.30%, 88.04%, 45.32% and 34.04% respectively. In the chlorination experiment at pH=3.5, 7 and 10.5, the flux loss of the modified membrane was reduced by 20L·m-2·h-1compared with that of the piperazine based nanofiltration membrane, and the rejection rate remained stable above 95%.
嵇华忠(1996- ),男,江苏丹阳人,硕士研究生,研究方向为污水处理与回用技术,E-mail:jihz2020@163.com

参考文献:
 [1] Lu X, Bian X, Shi L. Preparation and characterization of NF composite membrane[J]. Journal of Membrane Science, 2002, 210(1)3-11.(请补充卷,期号及终止页码)
[2] Hu J, Lv Z, Xu Y, et al. Fabrication of a high-flux sulfonated polyamide nanofiltration membrane: Experimental and dissipative particle dynamics studies[J]. Journal of Membrane Science, 2016, 505: 119–129.
[3] Subramanian S, Seeram R. New directions in nanofiltration applications — Are nanofibers the right materials as membranes in desalination?[J]. Desalination, 2013, 308: 198–208.
[4] Liu S, Wu C, Hou X, et al. Understanding the chlorination mechanism and the chlorine-induced separation performance evolution of polypiperazine-amide nanofiltration membrane[J]. Journal of Membrane Science, 2019, 573: 36–45.
[5] 李峰辉, 孟建强, 马六甲. 耐氯纳滤/反渗透复合膜的研究进展[J]. 高分子通报, 2014,186(10): 42–51.
[6] Wei X, Wang Z, Chen J, et al. A novel method of surface modification on thin-film-composite reverse osmosis membrane by grafting hydantoin derivative[J]. Journal of Membrane Science, 2010, 346(1): 152–162.
[7] Fan X, Dong Y, Su Y, et al. Improved performance of composite nanofiltration membranes by adding calcium chloride in aqueous phase during interfacial polymerization process[J]. Journal of Membrane Science, 2014, 452: 90–96.
[8] Zhu X, Cheng X, Xing J, et al. In-situ covalently bonded supramolecular-based protective layer for improving chlorine resistance of thin-film composite nanofiltration membranes[J]. Desalination, 2020, 474: 114197.
[9] Sun J, Zhu L-P, Wang Z-H, et al. Improved chlorine resistance of polyamide thin-film composite membranes with a terpolymer coating[J]. Separation and Purification Technology, 2016, 157: 112–119.
[10] Zhu J, Yuan S, Uliana A, et al. High-flux thin film composite membranes for nanofiltration mediated by a rapid co-deposition of polydopamine/piperazine[J]. Journal of Membrane Science, 2018, 554: 97–108.
[11] Wei X-Z, Gan Z-Q, Shen Y-J, et al. Negatively-charged nanofiltration membrane and its hexavalent chromium removal performance[J]. Journal of Colloid and Interface Science, 2019, 553: 475–483.
[12] Lu X, Romero-Vargas Castrillón S, Shaffer D L, et al. In Situ Surface Chemical Modification of Thin-Film Composite Forward Osmosis Membranes for Enhanced Organic Fouling Resistance[J]. Environmental Science & Technology, 2013, 47(21): 12219–12228.
[13] Shi H, Xue L, Gao A, et al. Fouling-resistant and adhesion-resistant surface modification of dual layer PVDF hollow fiber membrane by dopamine and quaternary polyethyleneimine[J]. Journal of Membrane Science, 2016, 498: 39–47.
[14] Wang C, Li Z, Chen J, et al. Covalent organic framework modified polyamide nanofiltration membrane with enhanced performance for desalination[J]. Journal of Membrane Science, 2017, 523: 273–281.
[15] Hu D, Xu Z-L, Wei Y-M, et al. Poly(styrene sulfonic acid) sodium modified nanofiltration membranes with improved permeability for the softening of highly concentrated seawater[J]. Desalination, 2014, 336: 179–186.
[16] Wu D, Martin J, Du J R,et al. Effects of chlorine exposure on nanofiltration performance of polyamide membranes[J]. Journal of Membrane Science, 2015, 487: 256–270.
[17] Kang G-D, Gao C-J, Chen W-D, et al. Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane[J]. Journal of Membrane Science, 2007, 300(1–2): 165–171.
[18] Kwon Y, Leckie J. Hypochlorite degradation of crosslinked polyamide membranesII. Changes in hydrogen bonding behavior and performance[J]. Journal of Membrane Science, 2006, 282(1–2): 456–464.
[19] Han R, Xie Y, Ma X, et al. Preparation of poly(2,4,6‐triaminopyrimidine‐TMC)/P84 composite nanofiltration membrane with enhanced chlorine resistance and solvent resistance[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(9): 2838–2843.
[20] Feng X, Liu D, Ye H, et al. High-flux polyamide membrane with improved chlorine resistance for efficient dye/salt separation based on a new N-rich amine monomer[J]. Separation and Purification Technology, 2021, 278: 119533.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号