陶瓷碳酸盐双相膜分离CO2的研究进展
作者:武和遥,王 迪,许艳阳,张永锋,陈天嘉
单位: 内蒙古工业大学化工学院,煤基固废高值化利用国家地方联合工程研究中心,内蒙古自治区煤基固废高效循环利用重点实验室,呼和浩特 010051
关键词: 膜分离;高温碳捕集;双相膜;CO2通量;渗透稳定性
出版年,卷(期):页码: 2023,43(2):155-163

摘要:
 膜分离技术以其操作简单、成本投入低、能耗低以及可以连续操作等优势在CO2分离与捕集领域吸引了研究者们的极大兴趣。致密陶瓷-碳酸盐双相膜能够在高温下直接分离CO2,从而节省了大量负载能,使其在CO2分离领域具有极大潜力。本文重点介绍了用于CO2分离的陶瓷-碳酸盐双相膜的材料、分离机理和特点,总结了该膜在CO2分离领域的研究进展。最后,对该膜未来的研究和发展方向进行了展望。
 Membrane technology has attracted researchers in the field of CO2 separation and capture due to many advantages, such as simple operation,low operating cost,energy saving and continuous operation. Dense ceramic-carbonate dual phase membrane is directly able to separate carbon dioxide at high temperatures, thus saving a lot of load energy, which makes it has great potential in the field of CO2 separation. In this paper, the materials, separation mechanism and characteristics of ceramic-carbonate dual phase membrane used for CO2 separation were introduced, and the research progress of this membrane was summarized. Finally, the future research and development direction were prospected.
武和遥(1999-),男,辽宁阜新人,硕士研究生,研究方向:陶瓷碳酸盐双相膜分离CO2,E-mail:w17824917670@163.com

参考文献:
 [1] 向正怡. 温室效应与全球气候变暖[J]. 中国高新区, 2018(3): 117.
[2] Zhang P, Tong J, Huang K, et al. The current status of high temperature electrochemistry-based CO2 transport membranes and reactors for direct CO2 capture and conversion[J]. Prog. Energy Combust. Sci, 2021, 82: 100888.
[3] 陈亮, 贺尧祖, 刘勇军, 等. 碳捕集技术研究进展[J]. 化工技术与开发, 2016, 45(4): 42-44.
[4] Wang Q, Luo J, Zhong Z, et al. CO2 capture by solid adsorbents and their applications: current status and new trends[J]. Energy Environ. Sci., 2011, 4(1): 42-55.
[5] 芮泽宝. 陶瓷膜及吸附剂在高温气体分离和CO2捕集中的应用[D].天津大学,2010.[Z].
[6] 龚之宝, 孙伟振, 李朋洲, 等. 无机膜分离技术及其研究进展[J]. 应用化工, 2019, 48(8): 1985-1989.
[7] Abdel-Salam O E, Winnick J. Simulation of an electrochemical carbon dioxide concentrator[J]. AIChE Journal, 1976, 22(6): 1042-1050.
[8] Weaver J L, Winnick J. The Molten Carbonate Carbon Dioxide Concentrator: Cathode Performance at High CO2 Utilization[J]. 1983: 9.(补充文献8有刊名及起止页码)
[9] Chung S J, Park J H, Li D, et al. Dual-Phase Metal−Carbonate Membrane for High-Temperature Carbon Dioxide Separation[J]. Ind. Eng. Chem. Res, 2005, 44(21): 7999-8006.
[10] Anderson M, Lin Y S. Carbonate–ceramic dual-phase membrane for carbon dioxide separation[J]. J. Membr. Sci, 2010, 357(1-2): 122-129.
[11] Dong X, Ortiz Landeros J, Lin Y S. An asymmetric tubular ceramic-carbonate dual phase membrane for high temperature CO2 separation[J]. Chem. Commun, 2013, 49(83): 9654.
[12] Zhu H Y. Ceramic Membranes for Separation and Reaction[J]. Chemie Ingenieur Technik, 2010, 82(4): 554-554.
[13] Rui Z, Anderson M, Lin Y S, et al. Modeling and analysis of carbon dioxide permeation through ceramic-carbonate dual-phase membranes[J]. J. Membr. Sci, 2009, 345(1-2): 110-118.
[14] Wade J, Lackner K, West A. Transport model for a high temperature, mixed conducting CO2 separation membrane[J]. Solid State Ionics, 2007, 178(27-28): 1530-1540.
[15] Zhang L, Xu N, Li X, et al. High CO2 permeation flux enabled by highly interconnected three-dimensional ionic channels in selective CO2 separation membranes[J]. Energy Environ. Sci, 2012, 5(8): 8310.
[16] Ortiz-Landeros J, Norton T, Lin Y S. Effects of support pore structure on carbon dioxide permeation of ceramic-carbonate dual-phase membranes[J]. Chem. Eng. Sci, 2013, 104: 891-898.
[17] Norton T T, Ortiz-Landeros J, Lin Y S. Stability of La–Sr–Co–Fe Oxide–Carbonate Dual-Phase Membranes for Carbon Dioxide Separation at High Temperatures[J]. Ind. Eng. Chem. Res, 2014, 53(6): 2432-2440.
[18] Yi J, Feng S, Zuo Y, et al. Oxygen Permeability and Stability of Sr0.95Co0.8Fe0.2O3-δ in a CO2- and H2O-Containing Atmosphere[J]. Chem. Mater. ACS, 2005, 17(23): 5856-5861.
[19] Tong J, Zhang L, Han M, et al. Electrochemical separation of CO2 from a simulated flue gas with high-temperature ceramic–carbonate membrane: New observations[J]. J. Membr. Sci, 2015, 477: 1-6.
[20] 陈兵兵, 林定标, 李慧, 等. 钯复合膜抗硫性能研究进展[J]. 天然气化工(C1化学与化工), 2018, 43(6): 100-106.
[21] Chen T, Yu B, Zhao Y, et al. Carbon dioxide permeation through ceramic-carbonate dual-phase membrane-effects of sulfur dioxide[J]. J. Membr. Sci, 2017, 540: 477-484.
[22] Chen T, Wu H C, Li Y, et al. Poisoning Effect of H2S on CO2 Permeation of Samarium-Doped-Ceria/Carbonate Dual-Phase Membrane[J]. Ind. Eng. Chem. Res, 2017, 56(49): 14662-14669.
[23] Chen T, Wang Z, Das S, et al. A novel study of sulfur-resistance for CO2 separation through asymmetric ceramic-carbonate dual-phase membrane at high temperature[J]. J. Membr. Sci, 2019, 581: 72-81.
[24] Xing W, Peters T, Fontaine M L, et al. Steam-promoted CO2 flux in dual-phase CO2 separation membranes[J]. J. Membr. Sci, 2015, 482: 115-119.
[25] Chen T, Wang Z, Liu L, et al. Coupling CO2 separation with catalytic reverse water-gas shift reaction via ceramic-carbonate dual-phase membrane reactor[J]. Chem. Eng. J, 2020, 379: 122182.
[26] 庄淑娟, 宋峰. 热电厂烟道气CO2分离无机膜的制备[J]. 科学技术与工程, 2020, 20(28): 11706-11710.
[27] Norton T T, Lin Y S. Ceramic–carbonate dual-phase membrane with improved chemical stability for carbon dioxide separation at high temperature[J]. Solid State Ionics, 2014, 263: 172-179.
[28] Lan R, Abdallah S M M, Amar I A, et al. Preparation of dense La0.5Sr0.5Fe0.8Cu0.2O3−δ–(Li,Na)2CO3–LiAlO2 composite membrane for CO2 separation[J]. J. Membr. Sci, 2014, 468: 380-388.
[29] Wang S, Tong J, Cui L, et al. A layered perovskite La1.5Sr0.5NiO4±δ-molten carbonate dual-phase membrane for CO2 capture from simulated flue gas[J]. J. Membr. Sci, 2022, 647: 120278.
[30] Zeng S, Liu Z, Zhao H, et al. A chemically stable La0.2Sr0.8Fe0.9Mo0.1O3-δ-molten carbonate dual-phase membrane for CO2 separation[J]. Sep. Purif. Technol, 2022, 280: 119970.
[31] Wade J L, Lee C, West A C, et al. Composite electrolyte membranes for high temperature CO2 separation[J]. J. Membr. Sci, 2011, 369(1-2): 20-29.
[32] Rui Z, Anderson M, Li Y, et al. Ionic conducting ceramic and carbonate dual phase membranes for carbon dioxide separation[J]. J. Membr. Sci, 2012, 417-418: 174-182.
[33] Mori T. Influence of particle morphology on nanostructural feature and conducting property in Sm-doped CeO2 sintered body[J]. Solid State Ionics, 2004, 175(1-4): 641-649.
[34] Lu B, Lin Y S. Synthesis and characterization of thin ceramic-carbonate dual-phase membranes for carbon dioxide separation[J]. J. Membr. Sci, 2013, 444: 402-411.
[35] Dong X, Wu H C, Lin Y S. CO2 permeation through asymmetric thin tubular ceramic-carbonate dual-phase membranes[J]. J. Membr. Sci, 2018, 564: 73-81.
[36] Zuo M, Zhuang S, Tan X, et al. Ionic conducting ceramic–carbonate dual phase hollow fibre membranes for high temperature carbon dioxide separation[J]. J. Membr. Sci, 2014, 458: 58-65.
[37] Zhuang S, Li Y, Zuo M, et al. Dense composite electrolyte hollow fibre membranes for high temperature CO2 separation[J]. Sep. Purif. Technol, 2014, 132: 712-718.
[38] Zhu J, Wang T, Song Z, et al. Enhancing oxygen permeation via multiple types of oxygen transport paths in hepta-bore perovskite hollow fibers[J]. AIChE Journal, 2017, 63(10): 4273-4277.
[39] Wang T, Liu Z, Xu X, et al. Insights into the design of nineteen-channel perovskite hollow fiber membrane and its oxygen transport behaviour[J]. J. Membr. Sci, 2020, 595: 117600.
[40] Xu Z, Zheng Q, Wang S, et al. Fabrication of molten nitrate/nitrite dual-phase four-channel hollow fiber membranes for nitrogen oxides separation[J]. J. Membr. Sci, 2021, 635: 119506.
[41] Jiang X, Zhu J, Liu Z, et al. CO2-Tolerant SrFe0.8Nb0.2O3-δ–Carbonate Dual-Phase Multichannel Hollow Fiber Membrane for CO2 Capture[J]. Ind. Eng. Chem. Res, 2016, 55(12): 3300-3307.
[42] Chen T, Wang Z, Hu J, et al. High CO2 permeability of ceramic-carbonate dual-phase hollow fiber membrane at medium-high temperature[J]. J. Membr. Sci, 2020, 597: 117770.
[43] Chen T, Xu Y, Zhang Y, et al. Double-layer ceramic-carbonate hollow fiber membrane with superior mechanical strength for CO2 separation[J]. J. Membr. Sci, 2022, 658: 120701.
[44] Anderson M, Lin Y S. Carbon dioxide separation and dry reforming of methane for synthesis of syngas by a dual-phase membrane reactor[J]. AIChE Journal, 2013, 59(6): 2207-2218.
[45] Zhang P, Tong J, Huang K. Combining Electrochemical CO2 Capture with Catalytic Dry Methane Reforming in a Single Reactor for Low-Cost Syngas Production[J]. Acs Sustain Chem Eng, 2016, 4(12): 7056-7065.
[46] Dong X, Lin Y S. Catalyst-free ceramic-carbonate dual phase membrane reactor for hydrogen production from gasifier syngas[J]. J. Membr. Sci, 2016, 520: 907-913.
[47] Wu H C, Rui Z, Lin J Y S. Hydrogen production with carbon dioxide capture by dual-phase ceramic-carbonate membrane reactor via steam reforming of methane[J]. J. Membr. Sci, 2020, 598: 117780.
[48] Cui C, Li S, Gong J, et al. Review of molten carbonate-based direct carbon fuel cells[J]. Mater renew sustain, 2021, 10(2): 12.
[49] Zhu B. Functional ceria–salt-composite materials for advanced ITSOFC applications[J]. J power sources, 2003, 114(1): 1-9.
[50] Elleuch A, Yu J, Boussetta A, et al. Electrochemical oxidation of graphite in an intermediate temperature direct carbon fuel cell based on two-phases electrolyte[J]. Int. J. Hydrogen Energy, 2013, 38(20): 8514-8523.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号