磺化自聚微孔聚酰亚胺的制备及磺化度对其气体分离性能的影响
作者:刘清潭, 储家琛,李建新,马小华
单位: 天津工业大学 材料科学与工程学院 省部共建分离膜与膜过程国家重点实验室,天津300387
关键词: 磺酸化;气体分离膜;聚酰亚胺;CO2/CH4分离
出版年,卷(期):页码: 2023,43(3):1-7

摘要:
研究了-SO3H基团的引入和不同磺化度对微孔聚酰亚胺气体分离膜的影响。区别于后磺化法,采用一步法使磺化单体2, 4, 6-三甲基二氨基苯磺酸(TrMSA)和非磺化单体2, 4, 6-三甲基-间苯二胺(DAM)与六氟二酐(6FDA)直接缩聚得到磺化聚酰亚胺(SPI),通过控制TrMSA和DAM的比例得到磺化度分别为25%,50%,75%与100%的聚合物。使用FT-IR、XRD、TGA、BET和气体渗透仪等手段研究不同磺化聚酰亚胺薄膜的化学结构、链段堆积结构、热性能、比表面和气体分离性能。结果显示,引入的-SO3H通过增强链间相互作用力,使得聚合物比表面积减小,以及链间距逐渐降低为0.57、0.52、0.47和0.42 nm,,所有气体的渗透性均随磺化度的升高而下降,然而CO2/CH4选择性在扩散系数的主导下则逐渐上升。当磺化度为75%时,磺化聚酰亚胺CO2 的透过率达到了 107 Barrer,CO2/CH4选择性为47.8,在压力高达2 MPa时仍保持在45,具有良好的抗塑化和气体分离性能。
  In this study, a series of novel sulfonated polyimides is prepared by one-pot high temperature polymerization method. Different from the post-sulfonation method, the degree of sulfonation (DS) can be precisely regulated by varying the ratio of 2, 4, 6-trimethyl- diaminobenzenesulfonic acid (TrMSA) and 2, 4, 6-trimethyl-m-phenylenediamine (DAM). The sulfonation degree is controlled to be 25%, 50%, 75% and 100%. And the effect of DS on the gas separation performance was deeply investigated. The physical properties such as chemical structure, chain packing and thermal properties are systematically studied using FT-IR, XRD, TGA, BET, respectively. The results show that as the increment of -SO3H groups, the chain spacing decreases from 0.57, 0.52, 0.47 to 0.42 nm, due to the strong hydrogen bonding interaction of SO3H group. Consequently, the permeability of gases decreases with the increase of DS, while the selectivity of CO2/CH4 gradually increases from 30.8 to 75.4. Particularly, the sulfonated polyimide with DS of 75% displayed a high CO2/CH4 selectivity of 47.8 and remained barely unchanged when the pressure increased from 2 to 20 bar. In a word, our work provides a deep insight for preparation of novel sulfonated polyimides with high gas separation performance.
刘清潭(1997-),女,陕西西安人,硕士研究生,E-mail:liuqt1221@163.com

参考文献:
[1] Willems G P, Golombok M, Tesselaar G, et al. Condensed rotational separation of CO2 from natural gas[J]. AIChE J, 2010, 56(1): 150-159.
[2] Barbosa L C, Nascimento M, Araujo O, et al. A cleaner and more sustainable decarbonation process via ionic-liquid absorption for natural gas with high carbon dioxide content[J]. J Clean Prod, 2020, 242(1/1): 118421.1-118421.13.
[3] Xuan P, Cao D, Computational screening of porous carbons, zeolites, and metal organic frameworks for desulfurization and decarburization of biogas, natural gas, and flue gas[J]. AIChE J, 2013, 59(8): 2928-2942.
[4] Zhang Z, Cano Z P, Luo D, et al. Rational design of tailored porous carbon-based materials for CO2 capture[J]. J Mater Chem A, 2019, 7(37): 20985-21003.
[5] Wang S, Li X, Wu H, et al. Advances in high permeability polymer-based membrane materials for CO2 separations[J]. Energy Environ Sci, 2016, 9(6): 1863-1890.
[6] Sanaeepur H, Ebadi Amooghin A, Moghadassi A, et al. Preparation and characterization of acrylonitrile–butadiene–styrene/poly(vinyl acetate) membrane for CO2 removal[J]. Sep Purif Technol, 2011, 80: 499-508.
[7] Sanaeepur H, Ahmadi R, Ebadi Amooghin A, et al. A novel ternary mixed matrix membrane containing glycerol-modified poly(ether-block -amide) (Pebax 1657)/copper nanoparticles for CO2 separation[J]. J Membr Sci, 2019, 573: 234-246.
[8] Sanaeepur H, Ahmadi R, Sinaei M, et al. Pebax-modified cellulose acetate membrane for CO2/N2 separation[J]. J Membr Sci Res, 2019, 5: 25-32. 
[9] Sanaeepur, H., Ebadi Amooghin, A., Bandehali, S. et al. Polyimides in membrane gas separation: Monomer's molecular design and structural engineering [J]. Prog Polym Sci, 2019, 91: 80-125.
[10] Tong H, Hu C, Yang S, et al. Preparation of fluorinated polyimides with bulky structure and their gas separation performance correlated with microstructure[J]. Polymer, 2015, 69: 138-147.
[11] Freeman B D. Polymers for gas separation [J]. Polym Adv Technol, 1994, 5(11): 671-671.
[12]黄旭, 邵路, 孟令辉,等. 聚酰亚胺基气体分离膜的改性方法及其最新进展[J]. 膜科学与技术, 2009, 29(1): 101-108.
[13] Kratochvil A M, Koros W J. et al. Decarboxylation-induced cross-linking of a polyimide for enhanced CO2 plasticization resistance[J]. Macromolecules, 2016, 41(21): 7920-7927.
[14] Song N, Yao H, Ma T et al. Fabrication of microporous polyimide networks with tunable pore size and high CO2 selectivity[J]. Chem Eng J, 2019, 368: 618-626.
[15] Lan Y J, Yan W, Chung T S, et al. Polyimides membranes for pervaporation and biofuels separation[J]. Prog Polym Sci, 2009, 34(11): 1135-1160.
[16] Zhang C, Li P, Cao B. et al. Decarboxylation crosslinking of polyimides with high CO2/CH4 separation performance and plasticization resistance[J]. J Membr Sci, 2017, 528: 206-216.
[17] Alaslai N, Ghanem B, Alghunaimi F. et al. Pure- and mixed-gas permeation properties of highly selective and plasticization resistant hydroxyl- diamine-based 6FDA polyimides for CO2/CH4 separation[J]. J Membr Sci, 2016, 505: 100-107.
[18] Liu Z, Qiu W, Quan W, et al. Fine-tuned thermally cross-linkable 6FDA-based polyimide membranes for aggressive natural gas separation [J]. J Membr Sci, 2021, 635: 119474..
[19] Abdulhamid M A, Genduso G, Ma X, et al. Synthesis and characterization of 6FDA/3,5- diamino-2,4,6-trimethylbenzenesulfonic acid- derived polyimide for gas separation applications [J]. Sep Purif Technol, 2021, 257: 117910.
[20] Zhang D, Seong J G, Lee W H , et al. Effects of sulfonate incorporation and structural isomerism on physical and gas transport properties of soluble sulfonated polyimides [J]. Polymer, 2020, 191: 122263.
[21] Xu R, Li L, Hou M, et al. Enhanced CO2 permeability of thermal crosslinking membrane via sulfonation/desulfonation of phenolphthalein -based cardo poly(arylene ether ketone)[J]. J Membr Sci, 2020, 598: 117824.
[22] Zhu Z, Zhu J, Li J, et al. Enhanced gas separation properties of Tröger’s base polymer membranes derived from pure triptycene diamine regioisomers [J]. Macromolecules, 2020, 53(5): 1573-1584.
[23] Han W, Zhang C, Zhao M, et al. Post-modification of PIM-1 and simultaneously in situ synthesis of porous polymer networks into PIM-1 matrix to enhance CO2 separation performance[J] J Membr Sci, 636(2021):119544.
[24] Dong H, Zhu Z, Li K, et al. Significantly improved gas separation properties of sulfonated PIM-1 by direct sulfonation using SO3 solution [J]. J Membr Sci, 2021, 635(45): 119440.
[25] L.M. Robeson, Z.P. Smith, B.D. Freeman, et al. Contributions of diffusion and solubility selectivity to the upper bound analysis for glassy gas separation membranes[J], J Membr Sci, 2014, 453: 71-83.
[26] Ji W , Li K , Min Y G , et al. Remarkably enhanced gas separation properties of PIM-1 at sub-ambient temperatures[J]. J Membr Sci, 2021, 623: 119091.
[27] Carta M, Croad M, Malpass-Evans R, et al. Triptycene induced enhancement of membrane gas selectivity for microporous Tr¨oger’s base polymers[J]. Adv Mater, 2014, 26: 3526-3531.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号