基于丙烯酸钠-乙烯基胺的交联均相阴离子交换膜的研究
作者:付佳雯,郝妙莉,康焯,何欣平,鹿倩倩,伊春海
单位: 1 西安交通大学 化学工程与技术学院,西安 710049; 2 中国石油天然气管道工程有限公司,河北 廊坊 065000
关键词: 阴离子交换膜;丙烯酸-乙烯基胺;燃料电池;阻醇
出版年,卷(期):页码: 2023,43(3):8-14

摘要:
 以碱中和后的丙烯酸(AA)和N-乙烯基甲酰胺(NVF)为原料,合成了一系列交联型碱性聚电解质膜。利用碱性聚电解质中羧酸根解离能够产生OH-离子的特性,采用溶液流延法制备相应的均相阴离子交换膜。通过FTIR、热重和含水溶胀度等手段对离子交换膜进行表征,研究了原料组成和交联程度对膜的离子电导率和甲醇渗透系数的影响。结果表明,室温下,当单体AA/NVF的质量比为1:1,交联剂戊二醛(GA)质量分数为0.1 %时,离子交换膜的导电率可达到3.2 mS/cm,甲醇透过系数为9.6×10-8 cm2/s,显示出其具有应用于直接甲醇燃料电池(DMFCs)的潜力。
 Carboxylate based polyelectrolyte is an important membrane material. In this work, a series of cross-linked alkaline polyelectrolyte membranes were synthesized from alkali neutralized acrylic acid (AA) and N-vinylformamide (NVF). Based on the characteristic that carboxylate radical dissociation in alkaline polyelectrolyte can produce OH-, the corresponding homogeneous anion exchange membrane was prepared by solution tape casting method. The ion exchange membrane was characterized by FTIR, thermogravimetry, water content and water swelling degree testing. The effects of composition and cross-linking degree on ionic conductivity as well as methanol permeability were studied. At room temperature, when the monomer mass ratio AA/NVF is 1:1 and the crosslinking agent glutaraldehyde (GA) content is 0.1 wt%, the conductivity of the ion exchange membrane can reach 3.2 mS/cm, and the methanol transmission coefficient is 9.6×10-8 cm2/s. It shows that it has the potential for application in direct methanol fuel cell (DMFCs).
付佳雯(1995-),女,重庆人,学生,博士,本科,从事渗透汽化脱盐材料的制备与应用,E-mail:fjw1021@foxmail.com

参考文献:
[1] 伍艳辉,张海峰,谭惠芬,等. 季铵化壳聚糖-聚乙烯醇阴离子交换膜的性能 [J]. 膜科学与技术, 2011, 31(1):6.
[2]Ryu J, Seo J Y, Choi B N, et al. Quaternized chitosan-based anion exchange membrane for alkaline direct methanol fuel cells [J]. Journal of Industrial and Engineering Chemistry, 2019, 73:254–259.
[3] Xiong Y, Liu Q L, Zhang Q G, et al. Synthesis and characterization of cross-linked quaternized poly(vinyl alcohol)/chitosan composite anion exchange membranes for fuel cells [J]. Journal of Power Sources, 2008, 183(2):447-453.
[4] Lue S J, Wang W T, Maheshk P O, et al. Enhanced performance of a direct methanol alkaline fuel cell (DMAFC) using a polyvinyl alcohol/fumed silica/KOH electrolyte [J]. Journal of Power Sources, 2010, 195(24): 7991-7999.
[5] 宋施杨, 陈文艺, 王吉林, 等. 新型[BTMG]OH离子液体的合成及其在阴离子交换膜中的应用 [J]. 膜科学与技术, 2018, 38(1):26-34.
[6] 浦鸿汀,侯继斅. 磷钨酸掺杂PVA/纳米SiO2复合膜甲醇渗透及质子导电性能的研究 [J]. 功能材料, 2005, 36(4): 563-565, 568.
[7] Chikh L, Delhorbe V, Fichet O. (Semi-)Interpenetrating polymer networks as fuel cell membranes [J]. Journal of Membrane Science, 2011, 368(1-2): 1-17.
[8] 孟枫舒, 张宏翔,江献财,等. 壳聚糖/季氨化聚乙烯醇燃料电池阴离子交换膜的制备与表征 [J]. 化工新材料, 2018, 46(8): 115-118.
[9] Valade D, Boschet F, Roualdes S, et al. Preparation of solid alkaline fuel cell binders based on fluorinated poly(diallyldimethylammonium chloride)s [poly(DADMAC)] or poly(chlorotrifluoroethylene-co-DADMAC) copolymers [J]. Journal of Polymer Science, 2009, 47(8): 2043-2058.
[10] Bo Q, Lin B, Qiu L, et al. Alkaline imidazolium- and quaternary ammonium-functionalized anion exchange membranes for alkaline fuel cell applications [J]., Journal of Materials Chemistry, 2011, 22(3): 1040-1045.
[11] Chen C, Jing P, Han J, et al. Varying the microphase separation patterns of alkaline polymer electrolytes [J]. Journal of Materials Chemistry, 2016, 4(11): 4071-4081.
[12] Arges C G, Parrondo J, Johnson G, et al. Assessing the influence of different cation chemistries on ionic conductivity and alkaline stability of anion exchange membranes [J]. Journal of Materials Chemistry, 2012, 22(9): 3733-3744.
[13] Gu S, Skovgard J, Yan Y S. Engineering the Van der Waals interaction in cross-linking-free hydroxide exchange membranes for low swelling and high conductivity [J]. Chemsuschem, 2012, 5(5): 843-848.
[14] Zhang B, Gu S, Wang J, et al. Tertiary sulfonium as a cationic functional group for hydroxide exchange membranes [J]. Research Advances, 2012, 2(33): 12683-12685.
[15] 刘建敏, 俞秋. 碱性聚合物电解质研究进展[J]. 广州化工, 2008, 36(6):25-27.
[16] Zhu X M, Yang H X, CaoY L, et al.Preparation and electrochemical characterization of the alkaline polymer gel electrolyte polymerized from acrylic acid and KOH solution[J].Electrochimica Acta,2004,49(16):2533—2539.
[17] 伍艳辉, 康峰, 李佟茗. PVA-PWA-Al2O3无机-有机复合质子交换膜的研究 [J]. 膜科学与技术, 2007, 27(3):57-60.
[18] 袁月, 杨采迪, 涂征,等. 聚乙烯醇/聚丙烯酸钠/Zn0.2Fe2.8O4复合水凝胶的制备及其溶胀行为[J]. 塑料工业, 2020, 48(2):6.
[19] Luo Y, Guo J, Wang C, et al. Quaternized poly(methyl methacrylate-co-butyl acrylate-co-vinylbenzyl chloride) membrane for alkaline fuel cells [J]. Journal of Power Sources, 2010, 195(12): 3765-3771.
[20] Wang G G, Weng Y M, Chu D, et al. Preparation of alkaline anion exchange membranes based on functional poly(ether-imide) polymers for potential fuel cell applications [J]. Journal of Membrane Science, 2009, 326(1): 4-8.
[21] Li L, Wang Y X. Quaternized polyethersulfone Cardo anion exchange membranes for direct methanol alkaline fuel cells [J]. Journal of Membrane Science, 2005, 262(1): 1-4.
[22] Xiong Y, Fang J, Zeng Q H, et al. Preparation and characterization of cross-linked quaternized poly(vinyl alcohol) membranes for anion exchange membrane fuel cells [J]. Journal of Membrane Science, 2008, 311(1): 319-325.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号