NanoAg/IL/Pebax混合基质膜的制备及其CO2分离性能
作者:常小虎, 李 鹏,杲 静,贺高红
单位: 1. 中国石油化工股份有限公司 西北油田分公司 石油工程技术研究院,新疆 乌鲁木齐,830011;2.中国石油化工股份有限公司 碳酸盐岩缝洞型油藏提高采收率重点实验室,新疆 乌鲁木齐,830011;3.大连理工大学 化工学院,辽宁 大连 116023
关键词: 混合基质膜,离子液体,气体分离,二氧化碳
出版年,卷(期):页码: 2023,43(3):15-21

摘要:
 针对混合基质膜中聚合物基质同填料之间的界面相容性问题,利用离子液体(IL)亲疏水特性,选用3种不同亲疏水性的离子液体[Bmim][Tf2N],[Bmim][BF4]和[Bmim][PF6]作为Pebax基质和纳米银颗粒(NanoAg)的界面亲和剂制备混合基质膜,探究三者之间的协同作用机制以及对膜气体分离性能的影响。利用扫描电子显微镜对混合基质膜形貌进行分析,探究其分散程度;利用机械拉力机探究IL对混合基质膜机械性能和气体分离性能的影响。结果表明,[Bmim][BF4]的加入使混合基质膜CO2/CH4的选择性达到35.84,相对于纯Pebax膜提高了58.67%。
 In order to solve the problem of interfacial compatibility between the polymer matrix and the filler in the mixed matrix membrane, three kinds of ionic liquids with different hydrophilic and hydrophobic properties ([Bmim][Tf2N], [Bmim][BF4] and [Bmim][PF6]) were used as interfacial affinity agents for Pebax matrix and nano-silver particles (NanoAg) to prepare mixed matrix membranes to explore the synergistic mechanism between their effects on the gas separation performance of the membrane. The morphology and degree of dispersion of the mixed matrix membrane was analyzed by scanning electron microscopy; the effect of IL on the mechanical properties and gas separation performance of the mixed matrix membrane was investigated by mechanical tension machine. The results showed that the addition of the [Bmim][BF4] increased the CO2/CH4 selectivity of the mixed matrix membrane to 35.84, which was 58.67% higher than that of the pure Pebax membrane.
常小虎(1986-),陕西榆林人,男,本科,副研究员,研究方向油气集输处理与CO2捕集及清洁能源利用

参考文献:
 [1] 张臻烨,胡山鹰,金涌.2060中国碳中和—化石能源转向化石资源时代[J].现代化工,2021,41(6):1-5. 
[2] 李飒,林千果,徐冬,等.膜分离-变压吸附协同捕集低浓度烟气二氧化碳工艺模拟研究[J].现代化工,2021,41(9):201-205.
[3] Y. Zheng, S. He, L. Gao, S. Li, Analysis and evaluation of the energy saving potential of the CO2 chemical absorption process, International Journal of Greenhouse Gas Control, 2021, 112:103486.
[4] K. Maqsood, A. Ali, A.B.M. Shariff, S. Ganguly, Process intensification using mixed sequential and integrated hybrid cryogenic distillation network for purification of high CO2 natural gas, Chemical Engineering Research and Design, 2017, 117 :414-438.
[5] H. Wang, W. Zheng, X. Yang, M. Ning, X. Li, Y. Xi, X. Yan, X. Zhang, Y. Dai, H. Liu, G. He, Pebax-based mixed matrix membranes derived from microporous carbon nanospheres for permeable and selective CO2 separation, Separation and Purification Technology, 2021, 274 :119015.
[6] L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, Journal of Membrane Science,1991, 62:165-185.
[7]杨凯,阮雪华,代岩,王佳铭,贺高红.氨基MIL-101(Cr)强化CO2分离性能的混合基质膜优化制备[J].化工学报,2020,71(01):329-336.
[8] 张晶晶, 张亚涛. 基于MOFs的混合基质膜在气体分离中的研究进展[J].现代化工,2019,39(08):38-42.
[9] T.-S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Progress in Polymer Science, 2007, 32:483-507.
[10] B. Seoane, J. Coronas, I. Gascon, M.E. Benavides, O. Karvan, J. Caro, F. Kapteijn, J. Gascon, Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?, Chemical Society Reviews, 2015, 44: 2421-2454.
[11] Z. Guo, W. Zheng, X. Yan, Y. Dai, X. Ruan, X. Yang, X. Li, N. Zhang, G. He, Ionic liquid tuning nanocage size of MOFs through a two-step adsorption/infiltration strategy for enhanced gas screening of mixed-matrix membranes, Journal of Membrane Science, 2020, 605:118101.
[12] Estahbanati E G ,  Omidkhah M ,  Amooghin A E . Interfacial Design of Ternary Mixed Matrix Membranes Containing Pebax 1657/Silver-Nanopowder/[BMIM][BF4] for Improved CO2 Separation Performance[J]. ACS Appl Mater Interfaces, 2017, 9(11):10094-10105.
[13] Y.C. Hudiono, T.K. Carlisle, J.E. Bara, Y. Zhang, D.L. Gin, R.D. Noble, A three-component mixed-matrix membrane with enhanced CO2 separation properties based on zeolites and ionic liquid materials, Journal of Membrane Science, 2010, 350:117-123.
[14] Song W ,  Haw J F ,  Nicholas J B , et al. Methylbenzenes Are the Organic Reaction Centers for Methanol-to-Olefin Catalysis on HSAPO-34[J]. Journal of the American Chemical Society, 2000, 122(43):10726-10727.
[15] D.F. Sanders, Z.P. Smith, C.P. Ribeiro, R. Guo, J.E. McGrath, D.R. Paul, B.D. Freeman, Gas permeability, diffusivity, and free volume of thermally rearranged polymers based on 3,3′-dihydroxy-4,4′-diamino-biphenyl (HAB) and 2,2′-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA), Journal of Membrane Science, 409-410 (2012) 232-241.
[16]王汉利,阮雪华,代岩,贺高红,单体美,王磊,孟祥青,许国锋.含氟聚酰亚胺的气体渗透性研究[J].膜科学与技术,2018,38(06):34-40.
[17] J. Liu, L. Gao, M. Di, L. Hu, X. Sun, X. Wu, X. Jiang, Y. Dai, X. Yan, G. He, Low boiling point solvent-soluble, highly conductive and stable poly (ether phenylene piperidinium) anion exchange membrane, Journal of Membrane Science, 2022, 644: 120185.
[18] 沈子琦, 汪义雄, 潘俊, 汪朝晖, 崔朝亮, 汪效祖. Matrimid/PPSU共混气体分离膜的制备[J].现代化工,2020,40(07):105-108.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号