天然气膜法脱碳过程中节流降温行为的研究
作者:王常春,赵 琦,丛玉凤,王丽娜,介兴明,康国栋,曹义鸣
单位: 1.辽宁石油化工大学 石油化工学院,抚顺 113001;2.中国科学院 大连化学物理研究所 洁净能源国家实验室,大连 116023
关键词: 聚酰亚胺;分离膜;焦耳–汤姆逊效应;二氧化碳;节流膨胀降温
出版年,卷(期):页码: 2023,43(3):22-29

摘要:
 采用实验室自制的聚酰亚胺(PI)中空纤维膜组件,通过气体节流渗透降温实验装置,系统考察了天然气中主要气体组分、膜渗透速率、组件填充率、操作压力以及放空比等参数对于膜法脱碳过程中气体节流渗透降温规律的影响。实验结果表明,CO2气体表现出最为显著的节流渗透降温现象;膜渗透速率、组件填充率、操作压力等参数的提高会加剧组件内CO2气体节流渗透降温程度,即降温速率变快且降温程度更严重;操作压力为1.5 MPa、进气温度为24.0 ℃时,膜组件内产生近20 ℃温降;放空比的提高在一定程度上有利于缓解组件内的温降现象。这些结果揭示了相关参数对膜组件内CO2节流渗透降温行为规律性的影响,为天然气膜法脱碳过程中CO2节流渗透降温行为的预判提供了科学有效的理论依据。
 [1] 石文.《中国天然气发展报告(2019)在京发布》[J]. 石油库与加油站, 2019, 28(5): 12.
[2] 李雷, 范莹莹. 竞争有序前提下促进中国天然气产业高质量发展的思考[J]. 中外能源, 2020, 25(1): 5-11.
[3] 吴敌. 21世纪海上丝绸之路背景下天然气供应链发展策略研究[J]. 中国水运, 2019, 19(2): 56-57.
[4] Wang S, Li X, Wu H, et al. Advances in high permeability polymer-based membrane materials for CO2 separations[J]. Energy & Environmental Science, 2016, 9(6): 1863-1890.
[5] 胡苏阳, 花亦怀, 李秋英, 等. 天然气膜分离脱碳技术评述[J]. 石化技术, 2021, 28(5): 54-55+57.
[6] Omole I C, Adams R T, Miller S J, et al. Effects of CO2 on a high performance hollow-fiber membrane for natural gas purification[J]. Industrial & Engineering Chemistry Research, 2010, 49(10): 4887-4896.
[7] Baker R W, Low B T. Gas separation membrane materials: a perspective[J]. Macromolecules, 2014, 47(20): 6999-7013.
[8] Liu Y, Liu Z, Morisato A, et al. Natural gas sweetening using a cellulose triacetate hollow fiber membrane illustrating controlled plasticization benefits[J]. Journal of Membrane Science, 2020, 601: 117910.
[9] Alghunaimi F, Ghanem B, Alaslai N, et al. Triptycene dimethyl-bridgehead dianhydride-based intrinsically microporous hydroxyl-functionalized polyimide for natural gas upgrading[J]. Journal of Membrane Science, 2016, 520: 240-246.
[10] Adewole J K, Ahmad A L. Polymeric membrane materials selection for high-pressure CO2 removal from natural gas[J]. Journal of Polymer Research, 2017, 24(5): 1-13.
[11] Ahmad F, Lau K K, Shariff A M, et al. The study of Joule Thompson effect for the removal of CO2 from natural gas by membrane process[J]. International Journal of Chemical and Environmental Engineering, 2012, 3(2): 115-118.
[12] 莫小梅. CO2气体等焓膨胀的焦耳-汤姆逊效应[J]. 百色学院学报, 2010, 23(6): 96-100.
[13] Al-Juaied M, Koros W J. Performance of natural gas membranes in the presence of heavy hydrocarbons[J]. Journal of Membrane Science, 2006, 274(1/2): 227-243.
[14] 郑成明, 郭昊, 刘向阳, 等. 海上平台燃料气重烃脱除工艺研究[J]. 石化技术, 2018, 25(4): 146-148.
[15] 马沛生, 李永红. 化工热力学[M]. 第二版. 北京: 化学工业出版社, 2005: 81-83.
[16] 罗双江, 白璐, 单玲珑, 等. 膜法二氧化碳分离技术研究进展及展望[J]. 中国电机工程学报, 2021, 41(4): 1209-1216+1527.
[17] 傅献彩, 沈文霞, 姚天扬, 等. 物理化学[M]. 第五版 (上册). 北京: 高等教育出版社, 2006: 92-97.
[18] Dal-Cin M M, Darcovich K, Saimani S, et al. Gas separation transport modeling for PDMS coatings on PEI-PEG IPN membranes[J]. Journal of Membrane Science, 2010, 361(1/2): 176-181.
[19] 张旭, 孟令鹏, 李培. 提高硅橡胶的粘附性制备多层复合膜[J]. 膜科学与技术, 2020, 40(6): 37-43.
[20] 夏清, 贾绍义. 化工原理[M]. 第二版 (上册). 天津: 天津大学出版社, 2012: 235-241.
[21] 吴丽冬, 李旭. 管壳式换热器及其特点[J]. 科技与企业, 2016 (5): 194.
[22] 朱旺. 高压低温氢气流动特性研究[D]. 北京: 中国运载火箭技术研究院, 2019.
[23] 贺传龙. 基于焦耳—汤姆逊效应的CO2制冷实验研究[D]. 大连: 大连海事大学, 2013.
[24] 张春威, 杨博, 李鹤, 等. 聚酰亚胺中空纤维膜对油田伴生气中二氧化碳分离性能的研究[J]. 膜科学与技术, 2018, 38(4): 93-98+106.
[25] 邓麦村, 金万勤. 膜技术手册[M]. 第二版 (下册). 北京: 化学工业出版社, 2020, 1184-1185.
[26] Jo E S, An X, Ingole P G, et al. CO2/CH4 separation using inside coated thin film composite hollow fiber membranes prepared by interfacial polymerization[J]. Chinese Journal of Chemical Engineering, 2017, 25(3): 278-287.
[27] Pak S H, Jeon Y W, Shin M S, et al. Preparation of cellulose acetate hollow-fiber membranes for CO2/CH4 separation[J]. Environmental Engineering Science, 2016, 33(1): 17-24.
王常春(1997-),男,江苏连云港人,硕士,研究方向为膜分离技术,E-mail:wangcc@dicp.ac.cn.

参考文献:
 Using polyimide (PI) hollow fiber membrane modules self-made in laboratory, through the gas throttling permeation and cooling experimental device, the influences of main components of natural gas, membrane permeation rate, module packing density, operating pressure and vent flow ratio on CO2 throttling permeation and cooling phenomena during carbon dioxide removal by membrane were investigated and analyzed systematically. The experimental results showed that CO2 exhibited the most obvious cooling phenomenon, increasing membrane permeation rate, module packing density and operating pressure will aggravate the cooling behavior, that is, the faster cooling rate and the more serious cooling degree. When operating pressure is 1.5 MPa and feed temperature is 24.0 °C, the temperature in membrane module generated a maximum drop around 20 °C; on the other hand, the cooling behavior will be alleviated to some extent with the increase of vent flow ratio. These results reveal the influences of relevant parameters on the regularity of CO2 throttling permeation and cooling behavior in membrane module and provide a scientific and effective theoretical basis for the prediction of CO2 throttling permeation and cooling effect during carbon dioxide removing from natural gas by membrane separation.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号