溶胀法改性聚二甲基硅氧烷及在多层复合膜中的应用
作者:高继发,赵 丹,孙 健,陈淑慧,任吉中,马君玲
单位: 1. 大连交通大学 环境与化学工程学院,辽宁 大连 116028; 2. 洁净能源国家实验室,中国科学院 大连化学物理研究所,辽宁 大连116023
关键词: 复合膜;PDMS;溶胀;非离子表面活性剂;气体分离
出版年,卷(期):页码: 2023,43(3):44-53

摘要:
 复合膜是气体分离膜的一个重要发展方向,近年来得到广泛应用。聚二甲基硅氧烷(PDMS)作为复合膜中间层能够有效防止孔渗现象,但是PDMS的疏水性不利于选择层溶液的涂覆,因此需要对PDMS进行改性。以Pluronic®F68、Pluronic®F127、Tween 20、Tween 60 4种非离子表面活性剂为原料,采用溶胀-去溶胀的方式对PDMS进行改性,并研究其亲水性和气体分离性能。结果表明,4种表面活性剂中Pluronic®F127的改性结果最佳;溶胀处理的PAN/PDMS复合膜在不影响本体机械性能和热力学性能的同时改变了表面组成;提高了PDMS中间层的亲水性和气体渗透性。经过溶胀改性的PAN/PDMS-Pluronic®F127复合膜的N2、O2、CO2渗透速率分别达到419.8、831.9、2879.7 GPU;在保证选择性基本不变的情况下,气体渗透速率提高了约70%;且经溶胀改性后的PAN/PDMS-Pluronic®F127更有利于后续分离层的涂覆。改性后的PAN/PDMS-Pluronic®F127/Pebax30R51复合膜相较于PAN/PDMS/Pebax30R51复合膜,CO2/N2选择性大幅提高,由22.77提高至45.09,同时CO2渗透速率可以达到272.5 GPU,显示出良好的渗透分离性能。
  Composite membranes which are an important development direction of membranes for gas separation, have been widely used in recent years. PDMS can effectively prevent pore penetration when it is used as the gutter layer of composite membranes. However, the hydrophobicity of PDMS is not conducive to the coating of the selective layer solution. Therefore, PDMS is urgently needed to be modified. In this paper, four nonionic surfactants- Pluronic®F68, Pluronic®F127, Tween20, and Tween60 were used to improve the hydrophilicity and gas separation performance of PDMS by swelling. As the results show, the PAN/PDMS composition membrane modified by Pluronic®F127 showed the best performance among the four nonionic surfactants. After swelling treatment, PAN/PDMS-Pluronic®F127 composition membrane had changed the surface composition and its hydrophilicity was enhanced. Compared with PAN/PDMS, the gas permeation performance of PAN/PDMS-Pluronic®F127 was greatly improved with little change on the mechanical and thermodynamic properties. The N2, O2, and CO2 permeance of PAN/PDMS-Pluronic®F127 composite membrane reached 419.8 GPU, 831.9 GPU, and 2879.7 GPU, respectively, and compared with PAN/PDMS, there was almost an increment of 70% while the selectivity remained mostly unchanged. Compared with PAN/PDMS, Pebax30R51 was more likely to form a defect-free thin selective layer on PAN/PDMS-Pluronic®F127. When swelling treatment was conducted, the CO2/N2 selectivity was improved from 22.27 of PAN/PDMS/Pebax30R51 to 45.09 of PAN/PDMS-Pluronic®F127/Pebax30R51 composite membrane which was the intrinsic selectivity of Pebax30R51 for CO2/N2 separation. Meanwhile, PAN/PDMS-Pluronic ®F127/Pebax30R51 showed CO2 permeance of 272.5 GPU.
高继发(1999-),男,山东泰安人,硕士生,从事气体分离膜研究,E-mail:gaojf@dicp.ac.cn

参考文献:
 [1] Pullumbi P, Brandani F, Brandani S. Gas separation by adsorption: technological drivers and opportunities for improvement[J]. Current Opinion in Chemical Engineering, 2019, 24:131-142.
[2] Sholl D, Lively R J N. Seven chemical separations to change the world [J]. Science, 2016, 533(7603):316-316.
[3] Sidhikku K V R, Ghasem N, Al-Marzouqi M. Current and future trends in polymer membrane-based gas separation technology: A comprehensive review[J]. Journal of Industrial and Engineering Chemistry, 2021, 98:103-129.
[4] Hu C C, Yeh H H, Hu C P, et al. The influence of intermediate layer and graphene oxide modification on the CO2 capture efficiency of Pebax-GO/PDMS/PSf mixed matrix composite membranes[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 135:104379.
[5] Yoo M J, Kim K H, Lee J H, et al. Ultrathin gutter layer for high-performance thin-film composite membranes for CO2 separation[J]. Journal of Membrance Science, 2018, 566:336-345.
[6] Lai J, Lin Y, Denq Y, et al. Surface modification of silicone rubber by gas plasma treatment[J]. Journal of Adhesion Science and Technology, 1996, 10(3):231-242.
[7] Fritz J L, Owen M J. Hydrophobic recovery of plasma-treated polydimethylsiloxane[J]. The Journal of Adhesion,1995, 54(1/2/3/4):33-45.
[8] Chuah Y J, Heng Z T, Tan J S, et al. Surface modifications to polydimethylsiloxane substrate for stabilizing prolonged bone marrow stromal cell culture[J]. Colloids and Surfaces B: Biointerfaces, 2020, 191:110995.
[9] Nakano H, Kakinoki S, Iwasaki Y J C, et al. Long-lasting hydrophilic surface generated on poly (dimethyl siloxane) with photoreactive zwitterionic polymers[J]. Colloids and Surfaces B: Biointerfaces, 2021, 205:111900.
[10] Flores-Rojas G, López-Saucedo F, Bucio E, et al. Covalent immobilization of lysozyme in silicone rubber modified by easy chemical grafting[J]. MRS Communications, 2017, 7(4):904-912.
[11] Esteban-Tejeda L, Duff T, Ciapetti G, et al. Stable hydrophilic poly (dimethylsiloxane) via glycan surface functionalization[J]. Polymer,2016, 106:1-7.
[12] Jiang B, Guo H, Chen D, et al. Microscale investigation on the wettability and bonding mechanism of oxygen plasma-treated PDMS microfluidic chip[J]. Applied Surface Science, 2022, 574:151704.
[13] Ghaleh H, Jalili K, Maher B M, et al. Biomimetic antifouling PDMS surface developed via well-defined polymer brushes for cardiovascular applications[J]. European Polymer Journal, 2018, 106:305-317.
[14] 王洪军, 刘家祺, 马敬环,等. 硅橡胶膜中的溶胀行为及分配系数 [J]. 膜科学与技术, 2004, 24(2):30-35.
[15] Zhang R, Ying C, Gao H, et al. Highly flexible strain sensors based on polydimethylsiloxane/carbon nanotubes (CNTs) prepared by a swelling/permeating method and enhanced sensitivity by CNTs surface modification[J]. Applied Surface Science, 2019, 171:218-225.
[16] 陈凯迪, 赵红永. 高透量聚二甲基硅氧烷/聚砜复合富氧膜制备[J]. 膜科学与技术, 2016, 36(3):86-92.
[17] Stafie N, Stamatialis D, Wessling M J S, et al. Effect of PDMS cross-linking degree on the permeation performance of PAN/PDMS composite nanofiltration membranes[J]. Separation and Purification Technology, 2005, 45(3):220-231.
[18] Sweah Z J, Zearah S A, Kadhim S H. Effect of Temperature and Doping Ratios on Electrical Conductivity of Polymer Blend Films of PluronicF127 and Polyvinyl Alcohol with Flavonoid Extract of Hibiscus Sabdariffa (Roselle)[c] Journal of Physics: Conference Series. IOP Publishing, 2019, 1279(1): 012035.
[19] Yang H, Nguyen Q T, Ding Y, et al. Investigation of poly (dimethyl siloxane)(PDMS)–solvent interactions by DSC[J]. Journal of Membrane Science, 2000, 164(1-2):37-43.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号