Janus膜的制备及其在CO2强化吸收中的应用
作者:吴文渊,李韵浩,付晓燕,刘铭辉,康国栋,曹义鸣,车如心,于海军
单位: 1.大连交通大学,大连 116023;2.中国科学院 大连化学物理研究所,大连 116023;3.辽宁省大连生态环境监测中心,大连 116023;4.中海油能源发展股份有限公司安全环保分公司,天津 300457
关键词: Janus中空纤维膜;微气泡;CO2吸收
出版年,卷(期):页码: 2023,43(3):54-63

摘要:
 分别以亲水性和疏水性聚合物溶液为外层和内层制膜液,通过共挤出法制备双层膜。以正丙醇为芯液,水为凝胶浴,调控成膜过程中的热力学和动力学参数,成功制备出外层亲水/内层疏水的Janus中空纤维膜。Janus中空纤维膜的外层水接触角为44°,内层水接触角为131°。将Janus膜应用于模拟烟道气中CO2吸收研究,考察气/液压差、吸收液体积流量和亲/疏水层厚度对CO2吸收性能的影响。当气-液压差为0.11 MPa时,模拟烟道气中CO2吸收率达到99.43%,气体处理通量为6050 L/(m2·h);在240 min连续吸收过程中,Janus膜的气体处理通量和CO2吸收率保持稳定。
 The dual-layer membranes were prepared by co-extrusion method which adopt hydrophilic and hydrophobic dope solutions as the outer and inner membrane solutions. With n-propanol as the bore liquid and water as the external water bath, the thermodynamic and kinetic parameters in the film-forming process were adjusted to successfully prepare the Janus hollow fiber membrane which had a structure of outer hydrophilic/inner hydrophobic. The water contact angle of the outer layer and inner layer of the Janus hollow fiber membrane were 44° and 131° separately. Janus membrane was applied to the absorption process of CO2 in simulated flue gas. The effects of gas/liquid pressure difference, absorbent volume flow and hydrophilic/hydrophobic layer thickness on CO2 absorption performance were investigated. When the gas/ liquid pressure difference was 0.11 MPa, the CO2 absorption rate in the simulated flue gas reached 99.43 %, and the gas treatment flux was 6050 L/(m2·h). During the 240 min continuous absorption process, the gas treatment flux and CO2 absorption rate remained stable.
吴文渊(1995-),男,江西上饶人,硕士,主要从事Janus膜制备和应用研究,E-mail:wywu@dicp.ac.cn.

参考文献:
 [1]IEA. Global energy review: CO2 emissions in 2021[R/OL]. IEA, Paris, 2022[2022-12-30]. https://www.iea.org/reports/global-energy-review-CO2-emissions-in-2021-2.
[2]Hoff K A, Juliussen O, Falk-Pedersen O, et al. Modeling and experimental study of carbon dioxide absorption in aqueous alkanolamine solutions using a membrane contactor[J]. Ind Eng Chem Res, 2004, 43(16): 4908-4921.
[3]Zhang H Y, Wang R, Liang D T, et al. Modeling and experimental study of CO2 absorption in a hollow fiber membrane contactor[J]. J Membr Sci, 2006, 279(1/2): 301-310.
[4]张卫风, 俞光明, 方梦祥. 温室气体CO2的回收技术[J]. 能源与环境, 2006 (3): 26-28.
[5]Simons K, Nijmeijer K, Wessling M. Gas-liquid membrane contactors for CO2 removal[J]. J Membr Sci, 2009, 340(1/2): 214-220.
[6]张志炳.微界面传质强化技术[M].北京:化学工业出版社, 2020.
[7]Yang H C, Hou J, Wan L S, et al. Janus membranes with asymmetric wettability for fine bubble aeration[J]. AdvMater Interfaces, 2016, 3(9): 1500774.
[8]Tang J, Zhang Y, Yao Y, et al. High-performance ultrafine bubble aeration on janus aluminum foil prepared by laser microfabrication[J]. Langmuir, 2021, 37(23): 6947-6952.
[9]Zhao M, Liu Y, Zhang J, et al. Janus ceramic membranes with asymmetric wettability for high-efficient microbubble aeration[J]. J Membr Sci, 2023, 671: 121418.
[10]Kuo C Y, Lin H N, Tsai H A, et al. Fabrication of a high hydrophobic PVDF membrane via nonsolvent induced phase separation[J]. Desalination, 2008, 233(1/2/3): 40-47.
[11]Wongchitphimon S, Wang R, Jiraratananon R, et al. Effect of polyethylene glycol (PEG) as an additive on the fabrication of polyvinylidene fluoride-co-hexafluropropylene (PVDF-HFP) asymmetric microporous hollow fiber membranes[J]. J. Membr. Sci, 2011, 369(1/2): 329-338.
[12]Pereira C C, Nobrega R, Peinemann K V, et al. Hollow fiber membranes obtained by simultaneous spinning of two polymer solutions: a morphological study[J].J Membr Sci, 2003, 226(1/2): 35-50.
[13]Xia Q C, Wang J, Wang X, et al. A hydrophilicity gradient control mechanism for fabricating delamination-free dual-layer membranes[J]. J Membr Sci, 2017, 539: 392-402.
[14]Widjojo N, Chung T S, Krantz W B. A morphological and structural study of Ultem/P84 copolyimide dual-layer hollow fiber membranes with delamination-free morphology[J]. J Membr Sci, 2007, 294(1/2): 132-146.
[15]Yin Z, Su B, Nie S, et al. Poly (vinylpyrrolidone-co-acrylonitrile-co-vinylpyrrolidone) modified polyethersulfone hollow fiber membranes with improved blood compatibility[J]. Fibers Polym, 2012, 13(3): 269-276
[16]Peng M, Li H, Wu L, et al. Porous poly (vinylidene fluoride) membrane with highly hydrophobic surface[J]. J Appl Polym Sci, 2005, 98(3): 1358-1363.
[17]吴胜军, 方为茂, 赵红卫, 等. 高速剪切流剪切形成微气泡的研究[J]. 水处理技术, 2009, 35(05): 44-48.
[18]Xu J H, Li S W, Chen G G, et al. Formation of monodisperse microbubbles in a microfluidic device[J]. AIChE Jl, 2006, 52(6): 2254-2259.
[19]Xie B Q, Zhou C J, Sang L, et al. Preparation and characterization of microbubbles with a porous ceramic membrane[J]. Chem Eng Process, 2021, 159: 108213.
[20]Trushin A M, Dmitriev E A, Akimov V V. Mechanics of the formation of microbubbles in gas dispersion through the pores of microfiltration membranes[J]. Theor Found Chem Eng, 2011, 45(1): 26-32.
[21]Kukizaki M, Goto M. Size control of nanobubbles generated from Shirasu-porous-glass (SPG) membranes[J]. J Membr Sci, 2006, 281(1/2): 386-396.
[22]Kim S J, Park A, Nam S E, et al. Practical designs of membrane contactors and their performances in CO2/CH4 separation[J]. Chem Eng Sci, 2016, 155: 239-247.
[23]张卫风,方梦祥,晏水平,等.不同中空纤维膜接触器分离烟气中CO2的性能比较[J].动力工程,2007,27(4):606-610.
[24]Rahmawati Y, Nurkhamidah S, Susianto S, et al. Effect of activated alkanolamine for CO2 absorption using hollow fiber membrane contactor[C]//IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2019, 543(1): 012080.
[25]Li M, Zhu Z, Zhou M, et al. Removal of CO2 from biogas by membrane contactor using PTFE hollow fibers with smaller diameter[J]. J Membr Sci, 2021, 627: 119232.
[26]Li Y, Hu X, Jin P, et al. Surface modification to produce superhydrophobic hollow fiber membrane contactor to avoid membrane wetting for biogas purification under pressurized conditions[J]. Sep Purif Technol, 2018, 194: 222-230.
[27]Tantikhajorngosol P, Laosiripojana N, Jiraratananon R, et al. A modeling study of module arrangement and experimental investigation of single stage module for physical absorption of biogas using hollow fiber membrane contactors[J]. J Membr Sci, 2018, 549: 283-294.
[28]Yang H C, Hou J, Wan L S, et al. Janus membranes with asymmetric wettability for fine bubble aeration[J]. Adv Mater Interfaces, 2016, 3(9): 1500774.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号