基于ZIF-8纳米粒子改性聚乙烯底膜的聚酰胺复合正渗透膜的制备和性能研究
作者:马俊梅,薛旭平,林明杰,李士洋,王庆一,薛立新
单位: 1浙江工业大学 化工学院膜分离与水科学技术中心, 杭州 310014;2温州大学 化学与材料工程学院,浙江 温州 325035
关键词: 聚乙烯 ZIF-8;原位生长;聚酰胺;正渗透膜
出版年,卷(期):页码: 2023,43(3):64-73

摘要:
 基于聚乙烯薄膜(PE)支撑材料,先通过浸涂Zn(II)离子和2-甲基-咪唑配体溶液原位生长金属有机框架ZIF-8纳米粒子进行改性,然后进行间苯二胺和1,3,5-苯三甲酰氯的两次界面聚合,得到聚乙烯/聚酰胺(PE/PA)薄层复合正渗透(TFC-FO)膜PE/ZIF-8/ PA2 。本文考察了ZIF-8纳米粒子对所准备的PE/ZIF-8/ PA2 TFC-FO膜的表面形貌结构、粗糙度、亲水性及正渗透性能的影响,并进一步研究了醇活化效应和水相共溶剂效应对生成的TFC-FO膜性能的影响。结果表明,ZIF-8中间层修饰后的聚乙烯底膜具有更大的粗糙度和更强的亲水性,两次聚合后得到的PE/ZIF-8/ PA2 TFC-FO膜,具有致密亲水和高比表面的聚酰胺分离层,优化后以去离子水为原料液、以浓度为1 mol/L NaCl为汲取液时,其水通量和反向盐通量分别为28.11 L/(m2·h)和0.39 mol/(m2·h)。
  Polyamide (PA) based thin film composite forward osmosis (TFC-FO) membranes were prepared from two-time interfacial polymerization (IP) processes between m-phenylene diamine (MPD) and trimesoyl chloride (TMC) on porous polyethylene (PE) substrates pre-modified with intermediate layers containing in situ grown ZIF-8 nano particles from the reaction of Zn(II) cations with 2-methylimidizole (2MIM) ligands. The impact of the ZIF-8 intermediate layers on the surface morphology, roughness, hydrophilicity and FO performance of the formed TFC-FO membranes were investigated. The effects from co-solvent modulation and from alcohol activation on the formed TFC-FO membranes were further studied. It was found that ZIF-8 modification could increase the surface roughness and hydrophilicity of the PE porous substrates, leading to the formation of PA layers with improved water flux and salt rejection rates. Under optimized conditions, the water flux of formed PE/ZIF-8 /PA2 TFC-FO membranes reached 28.11 L/(m²·h) with a low reverse salt flux value of 0.39 mol/(m²·h)) using 1 mol/L NaCl as drawing solution and pure water as feeding solution.
马俊梅(1998—),女,硕士研究生,山东日照人,研究方向为膜科学与技术。E-mail: SBXFSN@163.com

参考文献:
 [1] Wang R, Shi L, Tang C Y, et al. Characterization of novel forward osmosis hollow fiber membranes [J]. J Membr Sci, 2010, 355(1/2): 158-167.
[2] Khorshidi B, Bhinder A, Thundat T, et al. Developing high throughput thin film composite polyamide membranes for forward osmosis treatment of SAGD produced water [J]. J Membr Sci, 2016, 511: 29-39.
[3] Yu Y, Seo S, Kim I C, et al. Nanoporous polyethersulfone (PES) membrane with enhanced flux applied in forward osmosis process [J]. J Membr Sci, 2011, 375(1/2): 63-68.
[4] Widjojo N, Chung T-S, Weber M, et al. The role of sulphonated polymer and macrovoid-free structure in the support layer for thin-film composite (TFC) forward osmosis (FO) membranes [J]. J Membr Sci, 2011, 383(1/2): 214-223.
[5] Emadzadeh D, Lau W J, Ismail A F. Synthesis of thin film nanocomposite forward osmosis membrane with enhancement in water flux without sacrificing salt rejection [J]. Desalination, 2013, 330: 90-99.
[6] Widjojo N, Chung T S, Weber M, et al. A sulfonated polyphenylenesulfone (sPPSU) as the supporting substrate in thin film composite (TFC) membranes with enhanced performance for forward osmosis (FO) [J]. Chem Eng JChem Eng J, 2013, 220: 15-23.
[7] Liu X, Ng H Y. Fabrication of layered silica–polysulfone mixed matrix substrate membrane for enhancing performance of thin-film composite forward osmosis membrane [J]. J Membr Sci, 2015, 481: 148-163.
[8] Yasukawa M, Mishima S, Shibuya M, et al. Preparation of a forward osmosis membrane using a highly porous polyketone microfiltration membrane as a novel support [J]. J Membr Sci, 2015, 487: 51-59.
[9] Ryou M H, Lee Y M, Park J K, et al. Mussel-inspired polydopamine-treated polyethylene separators for high-power li-ion batteries [J]. Adv Mater, 2011, 23(27): 3066-70.
[10] Kwon S J, Park S H, Park M S, et al. Highly permeable and mechanically durable forward osmosis membranes prepared using polyethylene lithium ion battery separators [J]. J Membr Sci, 2017, 544: 213-220.
[11] Kwon S J, Park S H, Shin M G, et al. Fabrication of high performance and durable forward osmosis membranes using mussel-inspired polydopamine-modified polyethylene supports [J]. J Membr Sci, 2019, 584: 89-99.
[12] Li Q M, Ma H Y, Hu Y N, et al. Polyamide thin-film composite membrane on polyethylene porous membrane: Fabrication, characterization and application in water treatment [J]. Mater Lett, 2021, 287, 129270.
[13] Kim J Y, Lee Y, Lim D Y. Plasma-modified polyethylene membrane as a separator for lithium-ion polymer battery [J]. Electrochimica Acta, 2009, 54(14): 3714-3719.
[14] Won J, Seo J S, Kim J H, et al. Coordination compound molecular sieve membranes [J]. Adv Mater, 2005, 17(1): 80-84.
[15] Zhou H C, Long J R, Yaghi O M. Introduction to metal-organic frameworks [J]. Chem Rev, 2012, 112(2): 673-674.
[16] Wang X P, Hou J, Chen F S, et al. In-situ growth of metal-organic framework film on a polydopamine-modified flexible substrate for antibacterial and forward osmosis membranes [J]. Sep Purif Technol, 2020, 236, 116239.
[17] Perez E V, Balkus K J, Ferraris J P, et al. Mixed-matrix membranes containing MOF-5 for gas separations [J]. J Membr Sci, 2009, 328(1-2): 165-173.
[18] Hirose M, Ito H, Kamiyama Y. Effect of skin layer surface structures on the flux behaviour of RO membranes [J]. J Membr Sci, 1996, 121(2): 209-215.
[19] Shin M G, Kwon S J, Park H, et al. High-performance and acid-resistant nanofiltration membranes prepared by solvent activation on polyamide reverse osmosis membranes [J]. J Membr Sci, 2020, 595, 117590.
[20] Shin M G, Park S H, Kwon S J, et al. Facile performance enhancement of reverse osmosis membranes via solvent activation with benzyl alcohol [J]. J Membr Sci, 2019, 578: 220-229.
[21] Shin M G, Seo J Y, Park H, et al. Overcoming the permeability-selectivity trade-off of desalination membranes via controlled solvent activation [J]. J Membr Sci, 2021, 620, 118870.
[22] 罗方,王晶,姚之侃,等. 正渗透膜特征参数测试方法研究进展 [J]. 化工进展, 2021, 40(1): 31-38. 
[23] Ghosh A K, Hoek E M V. Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes [J]. J Membr Sci, 2009, 336(1/2): 140-148.
[24] Zou H, Jin Y, Yang J, et al. Synthesis and characterization of thin film composite reverse osmosis membranes via novel interfacial polymerization approach [J]. Sep Purif Technol, 2010, 72(3): 256-262.
[25] Kim E-S, Kim Y J, Yu Q, et al. Preparation and characterization of polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene fluoride (PVDF) [J]. J Membr Sci, 2009, 344(1/2): 71-81.
[26] Liu Y-L, Yu C-H, Lai J-Y. Poly(tetrafluoroethylene)/polyamide thin-film composite membranes via interfacial polymerization for pervaporation dehydration on an isopropanol aqueous solution [J]. J Membr Sci, 2008, 315(1/2): 106-115.
[27] Hu Y, Kazemian H, Rohani S, et al. In situ high pressure study of ZIF-8 by FTIR spectroscopy [J]. Chem Commun (Camb), 2011, 47(47): 12694-12696.
[28] Pan Y, Liu Y, Zeng G, et al. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system [J]. Chem Commun (Camb), 2011, 47(7): 2071-2073.
[29] Cravillon J, Nayuk R, Springer S, et al. Controlling zeolitic imidazolate framework nano- and microcrystal formation: Insight into crystal growth by time-resolved in situ static light scattering [J]. Chem Mater, 2011, 23(8): 2130-2141.
[30 Jegal J, Min S G, Lee KH. Factors affecting the interfacial polymerization of polyamide active layers for the formation of polyamide composite membranes [J]. J Appl Polym Sci, 2002, 86(11): 2781-2787.
[31 Yin J, Yang Y, Hu Z, et al. Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling [J]. J Membr Sci, 2013, 441: 73-82.
[32] Zhang S, Fu F, Chung T S. Substrate modifications and alcohol treatment on thin film composite membranes for osmotic power [J]. Chem Eng Sci, 2013, 87: 40-50.
[33] Gorgojo P, Jimenez-Solomon M F, Livingston A G. Polyamide thin film composite membranes on cross-linked polyimide supports: Improvement of RO performance via activating solvent [J]. Desalination, 2014, 344: 181-188.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号