利用纳滤膜技术分离秸秆发酵液中糖和乳酸的研究
作者:郭 佩, 赵黎明, 刘鲁杰, 邱勇隽, 李 爽
单位: 1 华东理工大学生物工程学院 发酵工业分离提取技术研发中心 生物反应器工程国家重点实验室,上海 200237;2 上海冠生园食品有限公司,上海 200237
关键词: L-乳酸;残糖;秸秆发酵液;纳滤;CFSK模型
出版年,卷(期):页码: 2023,43(3):104-115

摘要:
 本文旨在研究以秸秆类生物质为原料的L-乳酸发酵液中L-乳酸与残糖的纳滤分离工艺和特性。基于特有的高浓度L-乳酸发酵液的多组分体系,考察了pH值、跨膜压差、温度和离子强度对L-乳酸与残糖纳滤分离的影响,并且成功开发了糖/酸三级纳滤分离工艺。在最优纳滤条件(pH=2.00、压力2 MPa、温度25 ºC)下,乳酸纯度(质量分数)由92.4%提升至99.7%,每级纳滤的乳酸收率均高于80.0%,同时还达到了理想的脱色效果。此外,在机理方面,将CFSK模型(Combined Film-theory SKK model)的内、外插值结果与实验数据进行比对,证实了CFSK模型用于描述秸秆发酵液体系中糖/酸纳滤分离的适用性和准确性。
 This study aims to investigate the nanofiltration membrane separation technology to separate the residual sugars and the L-lactic acid from straw biomass fermentation broth. Based on the unique multi-component fermentation broth system with high concentration of L-lactic acid, the effects of pH, transmembrane pressure, temperature and ionic strength on the separation of residual sugars and L-lactic acid were investigated. Based on the optimal nanofiltration conditions (pH=2.00, 2 MPa, 25 ºC), a three-stage nanofiltration separation process was designed to perform nanofiltration separation on the actual fermentation broth. The purity (wt/wt %) of L-lactic acid was increased from 92.4% to 99.7%. The yield of L-lactic acid was higher than 80.0% in each stage, and the ideal effect of decolorization were achieved simultaneously. In terms of mechanism, the applicability and accuracy of CFSK model in describing nanofiltration separation of lactic acid and residual sugar in the straw fermentation broth system were established for the first time by comparing the internal and external interpolation results of the model with the experimental data. 
郭佩(1994-),女,湖北黄冈人,硕士,从事纳滤膜分离研究,E-mail:18616011302@163.com。

参考文献:
 [1] Es I, Mousavi Khaneghah A, Barba F J, et al. Recent advancements in lactic acid production − a review[J]. Food Research International, 2018, 107: 763-770.
[2] Ramot Y, Haim-Zada M, Domb A J, et al. Biocompatibility and safety of PLA and its copolymers[J]. Advanced Drug Delivery Reviews, 2016, 107: 153-162.
[3] Jem K J, Tan B. The development and challenges of poly (lactic acid) and poly (glycolic acid) [J]. Advanced Industrial and Engineering Polymer Research, 2020, 3(2): 60-70.
[4] Lv X, Guo Y, Zhuang Y, et al. Optimization and validation of an extraction method and HPAEC-PAD for determination of residual sugar composition in L-lactic acid industrial fermentation broth with a high salt content[J]. Analytical Methods, 2015, 7(21): 9076-9083.
[5] Komesu A, Maciel M R W, de Oliveira R A, et al. Influence of residual sugars on the purification of lactic acid using short path evaporation[J]. Bioresources, 2017, 12(2): 4352-4363.
[6] Oliveira R A d, Komesu A, Vaz Rossell C E, et al. A study of the residual fermentation sugars influence on an alternative downstream process for first and second-generation lactic acid[J]. Sustainable Chemistry and Pharmacy, 2020, 15: 100206.
[7] Pinelo M, Jonsson G, Meyer A S. Membrane technology for purification of enzymatically produced oligosaccharides: molecular and operational features affecting performance[J]. Sep Purif Technol, 2009, 70(1): 1-11.
[8] Dey P, Pal P. Direct production of L (+) lactic acid in a continuous and fully membrane-integrated hybrid reactor system under non-neutralizing conditions[J]. Journal of Membrane Science, 2012, 389(none):355-362.
[9] Oonkhanond B, Jonglertjunya W, Srimarut N, et al. Lactic acid production from sugarcane bagasse by an integrated system of lignocellulose fractionation, saccharification and fermentation, and ex-situ nanofiltration[J]. Journal of Environmental Chemical Engineering, 2017, 5(3):2533-2541.
[10] Ma K, Hu G, Pan L, et al. Highly efficient production of optically pure L-lactic acid from corn stover hydrolysate by thermophilic Bacillus coagulans[J]. Bioresource Technology, 2016, 219: 114-122.
[11] Qiu Z, Gao Q, Bao J. Engineering pediococcus acidilactici with xylose assimilation pathway for high titer cellulosic L-lactic acid fermentation[J]. Bioresource Technology, 2017, 249: 9-15.
[12] Liu G, Sun J, Zhang J, et al. High titer l-lactic acid production from corn stover with minimum wastewater generation and techno-economic evaluation based on Aspen plus modeling[J]. Bioresource Technology, 2015, 198:803-810.
[13] 赵凯, 许鹏举, 谷广烨. 3,5-二硝基水杨酸比色法测定还原糖含量的研究[J]. 食品科学, 2008, 29(8): 534-536.
[14] 赵黎明. 膜分离技术在食品发酵工业中的应用[M]. 中国纺织出版社, 2011.
[15] Spiegler K S, Kedem O. Thermodynamics of hyperfiltration (reverse osmosis): Criteria for efficient membranes [J]. Desalination, 1966, 1(4): 311-326.
[16] Murthy Z V P, Chaudhari L B. Rejection behavior of nickel ions from synthetic wastewater containing Na2SO4, NiSO4, MgCl2 and CaCl2 salts by nanofiltration and characterization of the membrane[J]. Desalination, 2009, 247(1-3): 610-622.
[17] Zhu J, Guo N, Zhang Y, et al. Preparation and characterization of negatively charged PES nanofiltration membrane by blending with halloysite nanotubes grafted with poly (sodium 4-styrenesulfonate) via surface-initiated ATRP[J]. Journal of Membrane Science, 2014, 465:91-99.
[18] Luo J, Wan Y. Effects of pH and salt on nanofiltration-a critical review[J]. Journal of Membrane Science, 2013, 438:18-28.
[19] Kunz W, Henle J, Ninham B W. ‘Zur Lehre von der Wirkung der Salze’ (About the science of the effect of salts): Franz Hofmeister's historical papers[J]. Current Opinion in Colloid and Interface Science, 2004, 9(1/2): 19-37.
[20] Freger V, Arnot T C, Howell J A. Separation of concentrated organic/inorganic salt mixtures by nanofiltration[J]. Journal of Membrane Science, 2000, 178(1): 185-193.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号