聚碳酸酯基聚合物电解质及其改性研究进展
作者:丁 青,丁培沛,李明晔,郭红霞,李 钒,秦振平
单位: 1.北京工业大学 材料与制造学部,北京 100124;2. 绿色催化与分离北京市重点实验室,北京工业大学 环境与生命学部,北京 100124
关键词: 聚碳酸酯;固体聚合物电解质;改性;锂离子电池
出版年,卷(期):页码: 2023,43(3):167-175

摘要:
 锂离子电池具有能量密度高、工作电压宽、循环寿命长、环境友好等优点,已被广泛用于移动电子设备和电动车等领域。为克服液态锂离子电池存在的缺陷和安全隐患等问题,用全固态电解质代替液态电解质制备的固态锂电池不含有机溶剂,并且其能量密度和循环寿命等具有较大的提升空间,受到研究者们的广泛关注。作为一种固体聚合物聚电解质,聚碳酸酯类固体聚合物电解质主链结构中含有强极性碳酸酯基团且室温呈无定形态,其介电常数高、尺寸稳定性好,有利于提高固体聚合物电解质的离子电导率和电化学窗口,被认为是很有应用前景的固体聚合物电解质。本文介绍了聚碳酸酯基固体聚合物电解质的导电机理,总结和评述了近年来国内外聚碳酸酯基聚合物电解质的改性研究进展,并展望了该研究领域的发展方向。
 Due to the advantages of high energy density, wide operating voltage, long cycle life and eco-friendly, lithium-ion batteries have been widely used in mobile electronic devices and electric vehicles. In order to overcome the safety problems of liquid lithium ion batteries, the all solid-state lithium-ion battery prepared by replacing liquid electrolyte with solid-state electrolyte, contains no organic solvent, and possibly achieves higher energy density and recyclability, which has attracted wide attention of researchers. As one of polymer solid polyelectrolyte, polycarbonate electrolyte has amorphous structure with groups of high dielectric constant existence in the stem chain, which helps to improve the ionic conductivity and electrochemical window of solid polymer electrolyte. In this review, the ion conductive mechanism of polycarbonate-based solid polymer electrolyte was elucidated. The recent progresses on modifying the polycarbonate-based electrolyte were summarized and reviewed, and the related development was prospected.
丁青(1998-),女,陕西商洛人,硕士研究生,研究方向为锂离子电池材料,E-mail:Dingqing@emails.bjut.edu.cn,

参考文献:
 [1]Goodenough J B, Park K S. The li-ion rechargeable battery: A perspective[J]. J Am Chem Soc, 2013, 135(4): 1167-1176.
[2]Zhang H, Li C, Piszcz M, et al. Single lithium-ion conducting solid polymer electrolytes: Advances and perspectives[J]. Chem Soc Rev, 2017, 46(3): 797-815.
[3]Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[4]Mauger A, Armand M, Julien C M, et al. Challenges and issues facing lithium metal for solid-state rechargeable batteries[J]. J Power Sources, 2017, 353: 333-342.
[5]Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced li-ion batteries: A review[J]. Energy Environ Sci, 2011, 4(9): 3243-3262.
[6]Palacín M R. Recent advances in rechargeable battery materials: A chemist’s perspective[J]. Chem Soc Rev, 2009, 38(9): 2565.
[7]Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[8]Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat Chem, 2015, 7(1): 19-29.
[9]Zhou G, Li F, Cheng H. Progress in flexible lithium batteries and future prospects[J]. Energy Environ Sci, 2014, 7(4): 1307-1338.
[10]Sun B, Mindemark J, Edström K, et al. Polycarbonate-based solid polymer electrolytes for li-ion batteries[J]. Solid State Ion, 2014, 262: 738-742.
[11]Ramesh S, Tan W, Arof A K. Investigation of mechanical properties of polyvinyl chloride–polyethylene oxide (pvc–peo) based polymer electrolytes for lithium polymer cells[J]. Eur Polym J, 2007, 43(5): 1963-1968.
[12]Yoon H K, Chung W S, Jo N J. Study on ionic transport mechanism and interactions between salt and polymer chain in pan based solid polymer electrolytes containing LiCF3SO3[J]. Electrochim Acta, 2004, 50(2-3): 289-293.
[13]Xu H, Xie J, Liu Z, et al. Carbonyl-coordinating polymers for high-voltage solid-state lithium batteries: Solid polymer electrolytes[J]. MRS Energy Sustain, 2020, 7(1).
[14]Zhao Y, Bai Y, Li W, et al. Design strategies for polymer electrolytes with ether and carbonate groups for solid-state lithium metal batteries[J]. Chem. Mater., 2020, 32(16): 6811-6830.
[15]Zhang J, Yang J, Dong T, et al. Aliphatic polycarbonate-based solid-state polymer electrolytes for advanced lithium batteries: advances and perspective[J]. Small, 2018, 14(36): 1800821.
[16]董甜甜, 张建军, 柴敬超, 等. 聚碳酸酯基固态聚合物电解质的研究进展[J]. 高分子学报, 2017(06): 906-921.
[17]Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chem Rev, 2004, 104(10): 4303-4418.
[18]Tominaga Y, Yamazaki K. Fast li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with Tio2 nanoparticles[J]. Chem Commun, 2014, 50(34): 4448-4450.
[19]Tominaga Y, Yamazaki K, Nanthana V. Effect of anions on lithium ion conduction in poly(ethylene carbonate)-based polymer electrolytes[J]. ECS Transactions, 2014, 62(1): 151-157.
[20]Kimura K, Yajima M, Tominaga Y. A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state li battery working at room temperature[J]. Electrochem Commun, 2016, 66: 46-48.
[21]Wang J, Wu Y, Xuan X, et al. Ion–molecule interactions in solutions of lithium perchlorate in propylene carbonate+diethyl carbonate mixtures: an IR and molecular orbital study[J]. SpectroChim Acta A Mol Biomol Spectrosc, 2002, 58(10): 2097-2104.
[22]Zhang J, Zhao J, Yue L, et al. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries[J]. Adv Energy Mater, 2015, 5(24): 1501082.
[23]Sun B, Mindemark J, V. Morozov E, et al. Ion transport in polycarbonate based solid polymer electrolytes: Experimental and computational investigations[J]. Phys Chem Chem Phys, 2016, 18(14): 9504-9513.
[24]Barbosa P C, Rodrigues L C, Silva M M, et al. Characterization of pTMCnLiPF6 solid polymer electrolytes[J]. Solid State Ion, 2011, 193(1): 39-42.
[25]Wei X, Shriver D F. Highly conductive polymer electrolytes containing rigid polymers[J]. Chem Mater, 1998, 10(9): 2307-2308.
[26]Chai J, Liu Z, Ma J, et al. In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Adv Sci, 2017, 4(2): 1600377.
[27]Wen K, Xin C, Guan S, et al. Ion–dipole interaction regulation enables high‐performance single‐ion polymer conductors for solid‐state batteries[J]. Adv Mater, 2022, 34(32): 2202143.
[28]Lin Z, Guo X, Wang Z, et al. A wide-temperature superior ionic conductive polymer electrolyte for lithium metal battery[J]. Nano Energy, 2020, 73: 104786.
[29]Morioka T, Nakano K, Tominaga Y. Ion-conductive properties of a polymer electrolyte based on ethylene carbonate/ethylene oxide random copolymer[J]. Macromol Rapid Commun, 2017, 38(8): 1600652.
[30]Tominaga Y, Nakano K, Morioka T. Random copolymers of ethylene carbonate and ethylene oxide for li-ion conductive solid electrolytes[J]. Electrochim Acta, 2019, 312: 342-348.
[31]Chen Y, Chen G, Niu C, et al. Ether-containing polycarbonate-based solid polymer electrolytes for dendrite-free lithium metal batteries[J]. Polymer, 2021, 223: 123695.
[32]Mindemark J, Sun B, Törmä E, et al. High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature[J]. J Power Sources, 2015, 298: 166-170.
[33]Mindemark J, Törmä E, Sun B, et al. Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries[J]. Polymer, 2015, 63: 91-98.
[34]Eriksson T, Mace A, Mindemark J, et al. The role of coordination strength in solid polymer electrolytes: compositional dependence of transference numbers in the poly(epsilon-caprolactone)-poly(trimethylene carbonate) system[J]. Phys Chem Chem Phys, 2021, 23(45): 25550-25557.
[35]Zhang B, Liu Y, Pan X, et al. Dendrite-free lithium metal solid battery with a novel polyester based triblock copolymer solid-state electrolyte[J]. Nano Energy, 2020, 72: 104690.
[36]Bao J, Shi G, Tao C, et al. Polycarbonate-based polyurethane as a polymer electrolyte matrix for all-solid-state lithium batteries[J]. J Power Sources, 2018, 389: 84-92.
[37]Motokucho S, Yamada H, Suga Y, et al. Synthesis of an aliphatic hyper-branched polycarbonate and determination of its physical properties for solid polymer electrolyte use[J]. Polymer, 2018, 145: 194-201.
[38]Wang Y, Chen S, Li Z, et al. In-situ generation of fluorinated polycarbonate copolymer solid electrolytes for high-voltage li-metal batteries[J]. Energy Storage Mater, 2022, 45: 474-483.
[39]Wang C, Liu H, Liang Y, et al. Molecular-level designed polymer electrolyte for high-voltage lithium-metal solid-state batteries[J]. Adv Funct Mater, 2023, 33(3): 2209828.
[40]Kwon S, Kim D, Shim J, et al. Preparation of organic/inorganic hybrid semi-interpenetrating network polymer electrolytes based on poly(ethylene oxide-co-ethylene carbonate) for all-solid-state lithium batteries at elevated temperatures[J]. Polymer, 2014, 55(12): 2799-2808.
[41]Meabe L, Huynh T V, Mantione D, et al. Uv-cross-linked poly(ethylene oxide carbonate) as free standing solid polymer electrolyte for lithium batteries[J]. Electrochim Acta, 2019, 302: 414-421.
[42]He Y, Liu N, Kohl P A. High conductivity, lithium ion conducting polymer electrolyte based on hydrocarbon backbone with pendent carbonate[J]. J Electrochem Soc, 2020, 167(10): 100517.
[43]Johansson I L, Brandell D, Mindemark J. Mechanically stable UV‐crosslinked polyester‐polycarbonate solid polymer electrolyte for high‐temperature batteries[J]. Batter Supercaps, 2020, 3(6): 527-533.
[44]Lu Q, Yang J, Lu W, et al. Advanced semi-interpenetrating polymer network gel electrolyte for rechargeable lithium batteries[J]. Electrochim Acta, 2015, 152: 489-495.
[45]Rong Z, Sun Y, Zhao Q, et al. Uv-cured semi-interpenetrating polymer networks of solid electrolytes for rechargeable lithium metal batteries[J]. Chem Eng J, 2022, 437: 135329.
[46]Zhao Y, Bai Y, Bai Y, et al. A rational design of solid polymer electrolyte with high salt concentration for lithium battery[J]. J Power Sources, 2018, 407: 23-30.
[47]Liang Y F, Xia Y, Zhang S Z, et al. A preeminent gel blending polymer electrolyte of poly(vinylidene fluoride-hexafluoropropylene) -poly(propylene carbonate) for solid-state lithium ion batteries[J]. Electrochim Acta, 2019, 296: 1064-1069.
[48]Wheatle B K, Lynd N A, Ganesan V. Effect of host incompatibility and polarity contrast on ion transport in ternary polymer-polymer-salt blend electrolytes[J]. Macromolecules, 2020, 53(3): 875-884.
[49]Li Z, Mindemark J, Brandell D, et al. A concentrated poly(ethylene carbonate)/poly(trimethylene carbonate) blend electrolyte for all-solid-state li battery[J]. Polym J, 2019, 51: 753-760.
[50]Li Z, Mogensen R, Mindemark J, et al. Ion-conductive and thermal properties of a synergistic poly(ethylene carbonate)/poly(trimethylene carbonate) blend electrolyte[J]. Macromol Rapid Commun, 2018, 39(14): 1800146.
[51]Pan K, Zhang L, Qian W, et al. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries[J]. Adv Mater, 2020, 32(17): 2000399.
[52]Liu X, Li X, Li H, et al. Recent progress of hybrid solid-state electrolytes for lithium batteries[J]. Chemistry – A European Journal, 2018, 24(69): 18293-18306.
[53]Liu S, Liu W, Ba D, et al. Filler-integrated composite polymer electrolyte for solid-state lithium batteries[J]. Adv Mater, 2023, 35(2): 2110423.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号