疏水性聚丙烯中空纤维膜制备方法及其应用研究进展
作者:张凡臣,唐元晖,林亚凯,汪 林,李沐霏,王晓琳
单位: 1.中国矿业大学(北京)化学与环境工程学院,北京 100083;2.清华大学 化学工程系 膜材料与工程北京市重点实验室,北京 100084;3.镇江清研膜业科技有限公司,江苏镇江 212141
关键词: 介绍了热致相分离法和熔融拉伸法制备聚丙烯中空纤维膜的研究进展。首先重点归纳了热致相分离法中稀释剂、冷却速率、成核剂等因素和熔融-拉伸法中退火温度、熔融拉伸比等制膜工艺条件对聚丙烯中空纤维膜结构与性能的影响;然后对聚丙烯中空纤维膜在体外膜肺氧合、膜蒸馏、膜吸收、膜萃取等领域的应用进行了介绍;最后对目前聚丙烯中空纤维膜在制备和应用领域所遇到的挑战及前景进行讨论和展望。
出版年,卷(期):页码: 2023,43(3):177-189

摘要:
介绍了热致相分离法和熔融拉伸法制备聚丙烯中空纤维膜的研究进展。首先重点归纳了热致相分离法中稀释剂、冷却速率、成核剂等因素和熔融-拉伸法中退火温度、熔融拉伸比等制膜工艺条件对聚丙烯中空纤维膜结构与性能的影响;然后对聚丙烯中空纤维膜在体外膜肺氧合、膜蒸馏、膜吸收、膜萃取等领域的应用进行了介绍;最后对目前聚丙烯中空纤维膜在制备和应用领域所遇到的挑战及前景进行讨论和展望。
 The recent research progress of hydrophobic polypropylene (PP) hollow fiber membranes prepared via thermally induced phase separation (TIPS) and melt-stretching (MS) was reviewed. The effects of diluent, cooling rate and the nucleating agent on the membrane formation process via TIPS, and the effects of annealing temperature and melt drawing ratio on the structure and properties of PP hollow fiber membranes via the MS method were summarized firstly. Then, the applications of PP hollow fiber membrane in different fields including extracorporeal membrane oxygenation, membrane distillation, membrane contactors and other aspects were discussed. Finally, the challenges and prospects of the preparation and application of PP hollow fiber membrane were proposed.
张凡臣(1999-),男,山东济宁人,硕士研究生,主要从事热致相分离法制备聚合物微孔膜的研究,E-mail:2463476005@qq.com。

参考文献:
 [1]Yang Y F, Wan L S, Xu Z K. Surface engineering of microporous polypropylene membrane for antifouling: A mini-review[J]. Journal of Adhesion Science and Technology, 2012, 25(1/2/3): 245-260.
[2]Chung T C, Lee S H. New hydrophilic polypropylene membranes; fabrication and evaluation[J]. Journal of Applied Polymer Science, 1997, 64(3): 567-575.
[3]孙卫明. 微孔聚丙烯中空纤维膜[J]. 高分子材料科学与工程, 1997, 13(4): 9-14.
[4]Himma N F, Prasetya N, Anisah S, et al. Superhydrophobic membrane: progress in preparation and its separation properties[J]. Reviews in Chemical Engineering, 2019, 35(2): 211-238.
[5]张凯, 胡晓宇, 陈英波, 等. 高性能聚合物中空纤维膜的研究进展[J]. 膜科学与技术, 2017, 37(6): 121-128.
[6]李凭力, 李英栋, 常贺英, 等. 制膜条件对聚丙烯中空纤维微孔膜强度的影响研究[J]. 膜科学与技术, 2006, 26 (4): 20-23.
[7]Cheng Z L, Li X, Feng Y N, et al. Tuning water content in polymer dopes to boost the performance of outer-selective thin-film composite (TFC) hollow fiber membranes for osmotic power generation[J]. Journal of Membrane Science, 2017, 524: 97-107.
[8]徐志康, 仰云峰, 万灵书. 聚丙烯微孔膜的表面工程[J]. 膜科学与技术, 2008, 28(6): 1-8.
[9]Kim J J, Jang T S, Kwon Y D, et al. Structural study of microporous polypropylene hollow fiber membranes made by the melt-spinning and cold-stretching method[J]. Journal of Membrane Science, 1994, 93(3): 209-215.
[10]Markets and Markets. Polypropylene market by type (homopolymer, copolymer), application (lnjection molding, fiber&raffia, film&sheet, and blow molding), end-use lndustry (packaging, automotive, building&construction, medical), and region-global forecast to 2022 [DB/OL]. https://www.marketsandmarkets.com/Market-Reports/polypropylene-market-64103589.html. 2018-01/2022-08-20.
[11]吴小燕. 深度分析!十张图了解2022年中国聚丙烯市场现状与发展趋势 2026年消费规模有望突破4300万吨 [DB/OL]. https://www.qianzhan.com/analyst/detail/220/211027-074a454d.html. 2021-10-27/2022-08-20. 
[12]胡继文, 黄勇, 沈家端. SEM研究微孔聚丙烯中空纤维膜的形成[J]. 高分子材料科学与工程, 2004, 20(2): 158-161.
[13]刘锦东, 徐军, 王晓琳, 等. 邻苯二甲酸二正烷基酯类稀释剂的烷基长度对热致相分离制备聚丙烯微孔膜的影响[J]. 膜科学与技术, 2007, 27 (5): 36-40.
[14]唐娜, 宋阳阳, 张蕾, 等. 聚丙烯构型对疏水微孔膜的性能影响及共混膜制备研究[J]. 膜科学与技术, 2020, 40(1): 1-7.
[15]罗本喆, 张军, 王晓琳, 等. 纳米碳酸钙/庚二酸复合成核剂对热致相分离法制备聚丙烯微孔膜的影响[J]. 高分子学报, 2006, (7): 866-872.
[16]陈刚, 林亚凯, 王晓琳. 混合稀释剂对热致相分离法制备等规聚丙烯微孔膜的影响[J]. 膜科学与技术, 2007, 27(6): 42-46+51.
[17]刘葭, 丁治天, 刘正英, 等. 分子量对聚丙烯拉伸微孔膜结构的影响[J]. 高分子材料科学与工程, 2011, 27(2): 64-67.
[18]杨振生, 崔东胜, 孟朋艳, 等. 成核剂对热致相分离法聚丙烯多孔膜结构及透过性能的影响[J]. 天津工业大学学报, 2008, 27(3): 5-8+11.
[19]Zhang D X, Ding L, Yang F, et al. Comparison of the Structural Evolution of β Polypropylene during the Sequential and Simultaneous Biaxial Stretching Process[J]. Chinese Journal of Polymer Science, 2021, 39(5): 620-631.
[20]Zhang D X, Ding L, Yang F, et al. Effect of annealing on the microvoid formation and evolution during biaxial stretching of β nucleated isotactic polypropylene [J]. Polymer-Plastics Technology and Materials, 2020, 59(14): 1595-1607.
[21]皇甫风云, 代朋, 孔媛媛, 等. 拉伸工艺对聚丙烯中空纤维膜性能的影响[J]. 膜科学与技术, 2014, 34(3): 43-47+52.
[22]杨艳丽, 孙洁, 钱坤. 基于相分离法制备聚丙烯微孔膜性能的研究[J]. 化工新型材料, 2014, 42(12): 189-191+194.
[23]奚振宇, 王玉杰, 杨永强, 等. 聚丙烯对热致相分离法制备分离膜结构的影响[J]. 化工新型材料, 2016, 44(9): 202-204.
[24]丁治天, 刘正英, 刘葭, 等. 高分子量级分含量对熔体挤出拉伸法制备聚丙烯微孔膜的影响[J]. 高分子学报, 2012, (4): 462-468.
[25]Liu Z Y, Wu X T, Yan J, et al. Effect of annealing temperature on pp microporous membranes obtained by a melt-extrusion-stretching method [J]. International Polymer Processing, 2019, 34(4): 467-474. 
[26]Yang Y, Wu G G, Ding C, et al. Formation of oriented β‐transcrystals induced by self‐assembly of nucleating agent and its micropores formation during uniaxial stretching[J]. Polymer Crystallization, 2020, 3(3), e10129.
[27]苏仪, 李永国, 陈翠仙, 等. 热致相分离法制备聚合物微孔膜的研究进展[J]. 膜科学与技术, 2007, 27 (5): 89-96.
[28]Khayet M, Souhaimi M K, Matsuura T. Membrane distillation: principles and applications[M]. Elsevier, 2011.
[29]张翠兰, 王志, 李凭力, 等. 热致相分离法制备聚丙烯微孔膜[J]. 膜科学与技术, 2000, 20 (6): 36-41+54.
[30]唐元晖, 李沐霏, 林亚凯, 等. 相转化法制膜过程的模型与模拟研究进展[J]. 膜科学与技术, 2020, 40(1): 266-274.
[31]Tang Y H, Lin Y K, Ford D M, et al. A review on models and simulations of membrane formation via phase inversion processes[J]. Journal of Membrane Science, 2021, 640, 119457.
[32]吴芳宇, 林亚凯, 汪林, 等. 聚4-甲基-1-戊烯膜的制备与应用研究进展[J]. 高分子通报, 2022, 227(5): 1-9.
[33]Yang Z S, Li P L, Chang H Y, et al. Effect of Diluent on the morphology and performance of IPP hollow fiber microporous membrane via thermally induced phase separation[J]. Chinese Journal of Chemical Engineering, 2006, 14(3): 394-397.
[34]Lloyd D R, Kinzer K E, Tseng H S. Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation[J]. Journal of Membrane Science, 1990, 52(3): 239-261.
[35]Lloyd D R, Kim S S, Kinzer K E. Microporous membrane formation via thermally-induced phase separation. II. Liquid—liquid phase separation[J]. Journal of Membrane Science, 1991, 64(1/2): 1-11.
[36]Kim S S, Lloyd D R. Microporous membrane formation via thermally-induced phase separation. III. Effect of thermodynamic interactions on the structure of isotactic polypropylene membranes[J]. Journal of Membrane Science, 1991, 64(1/2): 13-29.
[37]Lim G B A, Kim S S, Ye Q, et al. Microporous membrane formation via thermally-induced phase separation. IV. Effect of isotactic polypropylene crystallization kinetics on membrane structure[J]. Journal of Membrane Science, 1991, 64(1/2): 31-40.
[38]Kim S S, Lim G B A, Alwattari A A, et al. Microporous membrane formation via thermally-induced phase separation. V. Effect of diluent mobility and crystallization on the structure of isotactic polypropylene membranes[J]. Journal of Membrane Science, 1991, 64(1/2): 41-53.
[39]Alwattari A A, Lloyd D R. Microporous membrane formation via thermally-induced phase separation. VI. Effect of diluent morphology and relative crystallization kinetics on polypropylene membrane structure[J]. Journal of Membrane Science, 1991, 64(1/2): 55-67.
[40]McGuire K s, Lloyd D R, Lim G B A. Microporous membrane formation via thermally-induced phase separation. VII. Effect of dilution, cooling rate, and nucleating agent addition on morphology[J]. Journal of Membrane Science, 1993, 79(1): 27-34.
[41]Matsuyama H, Berghmans S, Batarseh M T, et al. Effects of thermal history on anisotropic and asymmetric membranes formed by thermally induced phase separation[J]. Journal of Membrane Science, 1998, 142(1): 27-42.
[42]Matsuyama H, Berghmans S, Lloyd D R. Formation of anisotropic membranes via thermally induced phase separation[J]. Polymer, 1999, 40(9): 2289-2301.
[43]Matsuyama H, Yuasa M, Kitamura Y, et al. Structure control of anisotropic and asymmetric polypropylene membrane prepared by thermally induced phase separation[J]. Journal of Membrane Science, 2000, 179(1/2): 91-100.
[44]Matsuyama H, Teramoto M, Kudari S, et al. Effect of diluents on membrane formation via thermally induced phase separation[J]. Journal of Applied Polymer Science, 2001, 82(1): 169-177.
[45]Matsuyama H, Maki T, Teramoto M, et al. Effect of polypropylene molecular weight on porous membrane formation by thermally induced phase separation[J]. Journal of Membrane Science, 2002, 204(1/2): 323-328.
[46]Matsuyama H, Takida Y, Maki T, et al. Preparation of porous membrane by combined use of thermally induced phase separation and immersion precipitation[J]. Polymer, 2002, 43(19): 5243-5248.
[47]Matsuyama H, Okafuji H, Maki T, et al. Preparation of polyethylene hollow fiber membrane via thermally induced phase separation[J]. Journal of Membrane Science, 2003, 223(1/2): 119-126.
[48]Kim J J, Hwang J R, Kim U Y, et al. Operation parameters of melt spinning of polypropylene hollow fiber membranes[J]. Journal of Membrane Science, 1995, 108(1/2): 25-36.
[49]Yang M C, Perng J S. Effect of quenching temperature on the morphology and separation properties of polypropylene microporous tubular membranes via thermally induced phase separation[J]. Journal of Polymer Research, 1998, 5(4): 213-219.
[50]Yang M C, Perng J S. Comparison of solvent removal methods of microporous polypropylene tubular membranes via thermally induced phase separation using a novel solvent: Camphene[J]. Journal of Polymer Research, 1999, 6(4): 251-258.
[51]Yang M C, Perng J S. Microporous polypropylene tubular membranes via thermally induced phase separation using a novel solvent — camphene[J]. Journal of Membrane Science, 2001, 187(1/2): 13-22.
[52]Kim B T, Song K, Kim S S. Effects of nucleating agents on preparation of polypropylene hollow fiber membranes by melt spinning process[J]. Macromolecular Research, 2002, 10(2): 127-134.
[53]Lee G H, K JH, Song K G, Kim S S, et al. Structure variation of polypropylene hollow fiber membrane with operation parameters in stretching process[J]. The Polymer Society of Korea, 2006, 30: 175-181.
[54]Yang Z, Li P, Xie L, et al. Preparation of iPP hollow-fiber microporous membranes via thermally induced phase separation with co-solvents of DBP and DOP[J]. Desalination, 2006, 192(1/2/3): 168-181.
[55]Zhao Y, Yang C, Cheng L, et al. Effects of spinning temperature on hollow fiber membrane prepared via thermally induced phase separation[J]. Desalination and Water Treatment, 2018, 129: 116-126.
[56]侯文贵, 李凭力, 张翠兰, 等. 热致相分离制备聚丙烯微孔膜微观结构的研究[J]. 膜科学与技术, 2003, 23(2): 27-31.
[57]李凭力, 黄卉, 周蕾, 等. TIPS法iPP中空纤维膜的拉伸性能研究[J]. 膜科学与技术, 2012, 32(6): 8-15.
[58]Chen G, Lin Y K, Wang X L. Formation of microporous membrane of isotactic polypropylene in dibutyl phthalate-soybean oil via thermally induced phase separation[J]. Journal of Applied Polymer Science, 2007, 105(4): 2000-2007.
[59]Lin Y K, Chen G, Yang J, et al. Formation of isotactic polypropylene membranes with bicontinuous structure and good strength via thermally induced phase separation method[J]. Desalination, 2009, 236(1/2/3): 8-15.
[60]Tang Y H, He Y D, Wang X L. Effect of adding a second diluent on the membrane formation of polymer/diluent system via thermally induced phase separation: Dissipative particle dynamics simulation and its experimental verification[J]. Journal of Membrane Science, 2012, 409/410: 164-172.
[61]Zhou B, Tang Y, Li Q, et al. Preparation of polypropylene microfiltration membranes via thermally induced (solid-liquid or liquid-liquid) phase separation method [J]. Journal of Applied Polymer Science, 2015, 132(35): 42490.
[62]郭宝华, 陈孜铎, 刘锦东, 等. 萃取和干燥对热致相分离制备聚丙烯微孔膜的影响[J]. 中国塑料, 2008, 22(6): 58-61.
[63]郭宝华, 范劲松, 刘锦东, 等. 聚丙烯分子量对热致相分离制备微孔膜的影响[J]. 高分子学报, 2009, (1): 35-39.
[64]Tang N, Jia Q, Zhang H, et al. Preparation and morphological characterization of narrow pore size distributed polypropylene hydrophobic membranes for vacuum membrane distillation via thermally induced phase separation[J]. Desalination, 2010, 256(1-3): 27-36.
[65]Wang Y J, Zhao Z P, Xi Z Y, et al. Microporous polypropylene membrane prepared via TIPS using environment-friendly binary diluents and its VMD performance[J]. Journal of Membrane Science, 2018, 548: 332-344.
[66]Pochivalov K V, Basko A V, Lebedeva T N, et al. Analysis of the thermal behavior of polypropylene-camphor mixtures for understanding the pathways to polymeric membranes via thermally induced phase separation[J]. The Journal of Physical Chemistry B, 2019, 123(49): 10533-10546.
[67]Tang Y, Lin Y, Ma W, et al. A review on microporous polyvinylidene fluoride membranes fabricated via thermally induced phase separation for MF/UF application[J]. Journal of Membrane Science, 2021, 639, 119759.
[68]Tang Y H, Liu J, Zhou B, et al. A criterion of diluent selection for the polymeric membrane formation via thermally induced phase separation process based on Hansen solubility parameter theory[J]. Advanced Membranes, 2022, 2, 100033.
[69]Trasande L, Liu B, Bao W. Phthalates and attributable mortality: A population-based longitudinal cohort study and cost analysis[J]. Environmental Pollution, 2022, 292(Pt A): 118021.
[70]林亚凯, 周波, 唐元晖, 等. 清华大学TIPS法制膜技术发展历程[J]. 膜科学与技术, 2021, 41(6): 276-287.
[71]Luo B Z, Zhang J, Wang X L, et al. Effects of nucleating agents and extractants on the structure of polypropylene microporous membranes via thermally induced phase separation[J]. Desalination, 2006, 192(1/2/3): 142-150.
[72]臧亚南, 丁恩勇. 聚丙烯微孔膜的研究进展[J]. 现代化工, 2004, 24(10): 19-22.
[73]胡晓宇, 梁海先, 肖长发. 中空纤维膜制备方法研究进展[J]. 高科技纤维与应用, 2009, 34(1): 38-45.
[74]Saffar A, Ajji A, Carreau P J, et al. The impact of new crystalline lamellae formation during annealing on the properties of polypropylene based films and membranes [J]. Polymer, 2014, 55(14): 3156-3167.
[75]Ding Z, Bao R, Zhao B, et al. Effects of annealing on structure and deformation mechanism of isotactic polypropylene film with row-nucleated lamellar structure [J]. Journal of Applied Polymer Science, 2013, 130(3): 1659-1666.
[76]Lei C H, Wu S Q, Cai Q, et al. Influence of heat-setting temperature on the properties of a stretched polypropylene microporous membrane[J]. Polymer International, 2014, 63(3): 584-588.
[77]林刚. 拉伸法微孔聚烯烃中空纤维膜原纤熔纺过程的数值模拟分析(Ⅰ)——聚丙烯[J]. 膜科学与技术, 1997, 17(6): 26-34.
[78]Liu X D, Ni L, Zhang Y F, et al. Technology Study of Polypropylene Hollow Fiber Membranes-Like Artificial Lung Made by the Melt-Spinning and Cold-Stretching Method [J]. Advanced Materials Research, 2011, 418/419/420: 26-29.
[79]Han S W, Woo S M, Kim D J, et al. Effect of annealing on the morphology of porous polypropylene hollow fiber membranes[J]. Macromolecular Research, 2014, 22(6): 618-623.
[80]Shao H J, Wei F J, Wu B, et al. Effects of annealing stress field on the structure and properties of polypropylene hollow fiber membranes made by stretching[J]. RSC Advances, 2016, 6(6): 4271-4279.
[81]Luo D J, Wei F J, Shao H J, et al. Effects of Cooling Ways on the Structure of Polypropylene Hollow Fiber Membranes Prepared by Stretching[J]. International Polymer Processing, 2019, 34(2): 172-181.
[82]Komaladewi A A I A S, Anisah S, Wardani A K, et al. The effect of annealing and stretching parameters on the structure and performance of polypropylene hollow fiber membrane[J]. Materials Research Express, 2019, 6(5), 054001.
[83]高分子网. 常见塑料树脂材料的表面能量 [DB/OL]. https://www.gaofenzi.org/archives/449.html. 2014-04-22/2022-08-20.
[84]铁娟, 张彩丽, 翁云宣. 体外膜氧合系统中膜材料的研究进展 [J]. 膜科学与技术, 2020, 40(6): 141-157.
[85]Evseev A K, Zhuravel S V, Alentiev A Y, et al. Membranes in Extracorporeal Blood Oxygenation Technology[J]. Membranes and Membrane Technologies, 2019, 1(4): 201-211.
[86]Teber O O, Altinay A D, Mehrabani S A N, et al. Polymeric hollow fiber membrane oxygenators as artificial lungs: A review[J]. Biochemical Engineering Journal, 2022, 25, 108340.
[87]Himma N F, Anisah S, Prasetya N, et al. Advances in preparation, modification, and application of polypropylene membrane[J]. Journal of Polymer Engineering, 2016, 36(4): 329-362.
[88]Mejia Mendez D L, Castel C, Lemaitre C, et al. Membrane distillation (MD) processes for water desalination applications. Can dense selfstanding membranes compete with microporous hydrophobic materials?[J]. Chemical Engineering Science, 2018, 188: 84-96.
[89]Parani S, Oluwafemi O S. Membrane distillation: Recent configurations, membrane surface engineering, and applications[J]. Membranes (Basel), 2021, 11(12).
[90]刘振, 高靖霓. 表面引发原子转移自由基聚合(SI-ATRP)法制备超疏水膜及其膜蒸馏应用[J]. 天津工业大学学报, 2021, 40(4): 1-10.
[91]Himma N F, Wardani A K, Wenten I G. Preparation of superhydrophobic polypropylene membrane using dip-coating method: The effects of solution and process parameters[J]. Polymer-Plastics Technology and Engineering, 2016, 56(2): 184-194.
[92]Liu Z, Pan Q, Xiao C. Preparation and vacuum membrane distillation performance of a silane coupling agent-modified polypropylene hollow fiber membrane[J]. Desalination, 2019, 468.
[93]田康, 曹利, 黄学敏. 膜吸收法脱除含硫化氢气体的实验研究[J]. 应用化工, 2019, 48(3): 545-549+553.
[94]孙亚伟, 谢美连, 刘庆岭, 等. 膜法分离燃煤电厂烟气中CO2的研究现状及进展[J]. 化工进展, 2017, 36(5): 1880-1889.
[95]Mansourizadeh A, Ismail A F. Hollow fiber gas-liquid membrane contactors for acid gas capture: A review[J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 38-53.
[96]陈颖, 关毅鹏, 张召才, 等. 海水烟气脱硫膜吸收单元及工艺研究[J]. 膜科学与技术, 2011, 31(5): 58-63.
[97]Mavroudi M, Kaldis S P, Sakellaropoulos G P. Reduction of CO2 emissions by a membrane contacting process[J]. Fuel, 2003, 82(15/16/17): 2153-2159.
[98]Porcheron F, Drozdz S. Hollow fiber membrane contactor transient experiments for the characterization of gas/liquid thermodynamics and mass transfer properties[J]. Chemical Engineering Science, 2009, 64(2): 265-275.
[99]张卫风, 马伟春, 邱雪霏. 醇胺吸收液的浸润性对膜吸收法脱除CO2性能的影响[J]. 化工进展, 2017, 36(12): 4686-4691.
[100]Gabelman A, Hwang S T. Hollow fiber membrane contactors[J]. Journal of Membrane Science, 1999, 159(1/2): 61-106.
[101]Keshavarz P, Fathikalajahi J, Ayatollahi S. Analysis of CO2 separation and simulation of a partially wetted hollow fiber membrane contactor [J]. Journal of Hazardous Materials, 2008, 152(3): 1237-1247.
[102]Lyu Y, Yu X, Tu S T, et al. Wetting of polypropylene hollow fiber membrane contactors[J]. Journal of Membrane Science, 2010, 362(1/2): 444-452.
[103]Pabby A K, Sastre A M State-of-the-art review on hollow fibre contactor technology and membrane-based extraction processes[J]. Journal of Membrane Science, 2013, 430: 263-303.
[104]Song J F, Huang T, Qiu H B, et al. A critical review on membrane extraction with improved stability: Potential application for recycling metals from city mine[J]. Desalination, 2018, 440: 18-38.
[105]郭江辉, 刘月栋, 常贺英, 等. 聚丙烯中空纤维膜在低浓度醋酸废水处理中的应用[J]. 化学工程, 2011, 39(8): 29-33.
[106]左丹英, 朱宝库, 王绍洪, 等. 聚丙烯中空纤维膜萃取水溶液中铜离子的研究[J]. 环境化学, 2006, 25(1): 50-54.
[107]Zuo D Y, Zhu B K, Wang S H, et al. Membrane extraction for separation of copper cations from acid solution using polypropylene hollow fibre membrane[J]. Polymers for Advanced Technologies, 2005, 16(10): 738-743.
[108]陈飞, 王玉军, 骆广生, 戴猷元. 溶胀对中空纤维膜萃取器中的流动和传质性能的影响[J]. 高校化学工程学报, 2002,16(4): 366-372.  
[109]张春风, 黄涛, 郑红星, 等. 半结晶、耐溶剂膜材料在膜萃取卤水提锂中的应用[J]. 膜科学与技术, 2020, 40(1): 171-178.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号