基于刺激响应机制的抗污染膜研究进展
作者:张浩然,祝振洲,陈 旭,李书艺,罗建泉
单位: 1.国家富硒农产品加工技术研发专业中心,硒科学与工程现代产业学院,武汉轻工大学,湖北,430023;2.湖北省绿色富硒农产品精深加工工程技术研究中心,湖北,430023; 3.生化工程国家重点实验室,中国科学院过程工程研究所,北京 100190
关键词: 刺激响应物质;抗污染膜;膜清洗;膜制备;膜污染
出版年,卷(期):页码: 2023,43(3):190-197

摘要:
 膜分离技术能够在不发生相变和温和的条件下分离目标物质,在食品、化工和环境等领域拥有巨大的应用前景。刺激响应性材料能够对某种特定的外界刺激进行响应,将刺激响应物质与膜技术结合制备基于刺激响应机制的抗污染分离膜,能为膜污染的原位控制和绿色清洗提供新思路。本文简要介绍了常用的聚合物/无机纳米材料及其刺激响应机理,聚焦基于刺激响应性物质的抗污染膜制备方法和应用场景,并对其规模化应用的挑战和未来前景提出了展望。
 Membrane separation technology can separate target substances without phase change under mild conditions, and has great application prospects in food, chemical and environmental fields. Stimulus-responsive polymers/inorganic nanoparticles are able to respond to a specific external stimulus; and integrating stimulus-responsive substances with membrane may improve its antifouling and self-cleaning performance, which provides new ideas for in situ control of membrane fouling and green cleaning. This review first briefly introduces the commonly-used responsive polymers/inorganic nanomaterials and the corresponding stimulus-response mechanisms, then focuses on the membrane preparation methods and application scenarios of antifouling membranes based on stimulus-response mechanisms, and finally presents an outlook on the challenges and future prospects of their industrial applications.
张浩然(1999-),男,湖北武汉人,硕士研究生,从事仿生抗污染膜的改性和应用研究. E-mail:1419008132@qq.com.

参考文献:
 [1]刘露露, 罗建泉, 张昊,等. 膜法制糖技术研究现状、挑战与展望[J]. 膜科学与技术,2021, 41(2): 140-146. 
[2]Miller D J, Dreyer D R, Bielawski C W, et al. Surface modification of water purification membranes[J]. Angew Chem Int Ed, 2017, 56 (17): 4662−4711.
[3]Fane A G, Wang R, Hu M X. Synthetic membranes for water purification: Status and future [J]. Angew Chem Int Ed, 2015, 54 (11): 3368−3386.
[4]Guo W S, Ngo H H, Li J X. A mini-review on membrane fouling[J]. Bioresour Technol, 2012,122: 27−34.
[5]黄嘉臣, 罗建泉, 郭世伟,等. 化学清洗对聚酰胺纳滤膜的影响机制研究进展[J].膜科学与技术, 2020, 40(1):212-220.
[6]Chen X, Bi S, Shi C, et al. Temperature-sensitive membranes prepared from blends of poly(vinylidene fluoride) and poly(N-isopropylacrylamides) microgels[J]. Colloid Polym Sci, 2013, 291: 2419–2428. 
[7]Zhang R, Zhou T, Peng H, et al. Nanostructured switchable pH-responsive membranes prepared via spherical polyelectrolyte brushes[J]. J Membr Sci, 2019, 580: 117–124.
[8]Ronen A, Walker S L, Jassby D, et al. Electroconductive and electroresponsive membranes for water treatment[J]. Rev Chem Eng, 2016, 32(5): 533-550.
[9]Yang Q, Himstedt H H, Ulbricht M, et al. Designing magnetic field responsive nanofiltration membranes[J]. J Membr Sci,2013, 430: 70–78. 
[10]Shi W, Deng J, Qin H, et al. Poly(ether sulfone) membranes with photo-responsive permeability[J]. J Membr Sci, 2014, 455: 357–367.
[11]杨强剑, 罗建泉, 郭世伟,等.聚醚砜超滤膜处理糖蜜中的膜污染控制[J].膜科学与技术,2019,39(6): 94-102. 
[12]江萍. pH和温度响应型高分子智能膜的制备、性能及应用研究[D]. 长沙: 中南大学,2014.
[13]郭晴晴,崔振宇,何本桥. 环境刺激响应型纳滤膜的研究进展[J].膜科学与技术, 2021,41(3):179- 186.
[14]Bharti S, Manish K S, Anirban D. Functionalized polymeric smart membrane for remediation of emerging environmental contaminants from industrial sources: Synthesis, characterization and potential applications[J]. Process Saf Environ Prot, 2022,161: 684-702.
[15]Jayalakshmi A, Thi P N N, Byung-Moon J, et al. Protection of polymeric membranes with antifouling surfacing via surface modifications[J]. Colloids Surf A Physicochem Eng Asp, 2016, 506: 190-201.
[16]秦佳旺, 付国保, 谢锐,等. 环境响应型智能开关膜的应用研究进展[J].膜科学与技术,2020,40(1):294-302.
[17]Wu C, Zhao L, Zhang Y. pH-Responsive nanofiltration membranes based on porphyrin supramolecular self-assembly by layer-by-layer technique[J]. RSC Adv, 2017,75: 47397-47406.
[18]Plisko T V, Burts K S, Bildyukevich A V. Development of dynamic pH and temperature-responsive smart membranes via immobilization of chitosan-graft-poly(N-isopropylacrylamide-co-methacrylic acid) hydrogels on microfiltration membrane-support[J]. Mater Des, 2021,208: 109939.
[19]Renuka S P, Erol S. Fabrication of pH-responsive polyimide polyacrylic acid smart gating membranes: Ultrafast method using 248 nm krypton fluoride excimer laser[J].ACS Appl Mater Interf, 2021,13(21): 24431-24441.
[20]Wei M, Tomonori I, Yu I H, et al. Preparation of pH-responsive poly(γ-glutamic acid) hydrogels by enzymatic cross-linking[J]. ACS Biomater Sci Eng, 2022, 8(2): 551-559.
[21]Zhao G L, Chen W N. Design of poly(vinylidene fluoride)-g-p(hydroxyethyl methacrylate-co-N-isopropylacrylamide) membrane via surface modification for enhanced fouling resistance and release property[J]. Appl Surf Sci,2017, 398: 103-115.
[22]Wu G G, Li Y P, Han M, et al. Novel thermo-sensitive membranes prepared by rapid bulk photo-grafting polymerization of N,N-diethylacrylamide onto the microfiltration membranes nylon[J]. J Membr Sci, 2006, 283: 13-20.
[23]Mao H Y, Zhou S Y, Shi S, et al. Anti-fouling and easy-cleaning PVDF membranes blended with hydrophilic thermo-responsive nanofibers for efficient biological wastewater treatment[J]. Sep Purif Technol, 2022, 281:  119881.
[24]Qian X H, Yang Q, Vu A, et al. Localized heat generation from magnetically responsive membranes[J].Ind Eng Chem Res, 2016, 55(33): 9015-9027.
[25]Gao M H, Feng W, Qi X D. et al. Multistimuli responsive and thermoregulated capability of coaxial electrospun membranes with core-sheath structure and functional polypyrrole layer[J]. Chin J Polym Sci, 2022, 40: 1380–1388. 
[26]Lin C W, Aguilar S, Rao E, et al. Direct grafting of tetraaniline via perfluorophenylazide photochemistry to create antifouling, low bio-adhesion surfaces[J]. Chem Sci, 2019,10: 4445–4457.
[27]Xu L L, Shahid S, Alec D, et al. Flexible electro-responsive in-situ polymer acid doped polyaniline membranes for permeation enhancement and membrane fouling removal[J]. J Membr Sci, 2019, 578: 263-272.
[28]Wang K P, Xu L L, Li K L,et al.Development of polyaniline conductive membrane for electrically enhanced membrane fouling mitigation[J]. J Membr Sci, 2019, 570:371-379.
[29]Shinkai S, Kinda H, Manabe, O. Photo-responsive complexation of metal cations with an azobenzene-crown-azobenzene bridge immobilized in polymer supports[J]. J Am Chem Soc, 1982, 104: 2933–2934.
[30]Matthew I G, Rachel R. To aggregate, or not to aggregate? Considerations in the design and application of polymeric thermally-responsive nanoparticles[J]. Chem Soc Rev, 2013, 42(17): 7204−7213.
[31]Siew C L, Qi H N, Lian S T.Study of magnetic-responsive nanoparticle on the membrane surface as a membrane antifouling surface coating[J].J Polym Res, 2019, 26: 70-80. 
[32]Elvira P, Giovanni D F, Fiore P N. Light-Responsive Polymer Membranes[J]. Adv. Optical Mater., 2019,7(16): 1900252.
[33]Li N X, Yin J, Wei L F, et al. Facile Synthesis of Cellulose Acetate Ultrafiltration Membrane with Stimuli-Responsiveness to pH and Temperature Using the Additive of F127-b-PDMAEMA[J]. Chin. J. Chem., 2017, 35(7): 1109-1116.
[34]Zhang K, Huang H Y, Yang G C, et al. Characterization of nanostructure of stimuli-responsive polymeric composite membranes[J]. Biomacromolecules, 2004, 5(4): 1248-1255.
[35]Zhai W T, Yu H W, Chen H, et al. Stable fouling resistance of polyethylene (PE) separator membrane via oxygen plasma plus zwitterion grafting[J].Sep. Purif. Technol, 2022, 293: 121091.
[36]Wu J D, Wei W, Li S H, et al. The effect of membrane surface charges on demulsification and fouling resistance during emulsion separation[J]. J Membr Sci, 2018, 563: 126-133.
[37]Mathias Q, Ronald O, Michaela K, et al. Macro-initiator mediated surface selective functionalization of ultrafiltration membranes with anti-fouling hydrogel layers applicable to ready-to-use capillary membrane modules[J]. J Membr Sci, 2016, 518: 328-337
[38]Lisendra M , Muhammad R, Bilad, et al. Gradual PVP leaching from PVDF/PVP blend membranes and its effects on membrane fouling in membrane bioreactors[J].Sep. Purif. Technol,2019, 213: 276-282.
[39]Xu D L, Zheng J F, Zhang X, et al. Mechanistic Insights of a Thermoresponsive Interface for Fouling Control of Thin-Film Composite Nanofiltration Membranes[J].Environ Sci Technol, 2022, 56(3): 1927-1937.
[40]Ma R H, Lu X L, Wu C R, et al. Performance design of a highly anti-fouling porous membrane with dual pH-responsiveness[J]. J Membr Sci, 2022, 660: 120886.
[41]Su M, Teoh M M, Wang K Y, et al. Effect of inner-layer thermal conductivity on flux enhancement of dual-layer hollow fiber membranes in direct contact membrane distillation[J]. J Membr Sci, 2010, 364(1): 278-289.
[42]Felix S, Mathias U, Axel M. Self-supporting, double stimuli-responsive porous membranes from polystyrene-block-poly (N, N-dimethyl-aminoethyl methacrylate) diblock copolymers[J]. Adv Funct Mater, 2009, 19(7): 1040-1045.
[43]Felix S, Tobias R, Florian W, et al. Double stimuli-responsive ultrafiltration membranes from polystyrene-block poly (N, N-dimethyl-aminoethyl methacrylate) diblock copolymers[J]. ACS Appl Mater Interf, 2009, 1(7): 1492-1503.
[44]Osypova A, Magnin D, Sibret P, et al. Dual stimuli-responsive coating designed through layer-by-layer assembly of PAA-b-PNIPAM block copolymers for the control of protein adsorption[J]. Soft Matter.,2015,11: 8154-8164.
[45]Wu C L, Zhao L Z, Zhang Y Z, et al. pH-Responsive nanofiltration membranes based on porphyrin supramolecular self-assembly by layer-by-layer technique[J]. RSC Adv, 2017, 7: 47397-47406.
[46]Sun H G, Zhang Y Q, Li S W, et al. Multifunctional core–shell zwitterionic nanoparticles to build robust, stable antifouling membranes via magnetic-controlled surface segregation[J]. ACS Appl Mater Interf, 2019,11 (38): 35501–35508.
[47]Xu Z W, Wu T F, Shi J, et al. Manipulating migration behavior of magnetic graphene oxide via magnetic field induced casting and phase separation toward high-performance hybrid ultrafiltration membranes[J]. ACS Appl Mater Interf, 2016,8 (28): 18418–18429.
[48]Heath H, Himstedt, Arijit S, et al. Magnetically responsive nano filtration membranes for treatment of coal bed methane produced water[J]. J Taiwan Inst Chem Eng, 2019,94: 97-108.
[49]Raveshiyuan S, Hosseini S, Karimi-Sabet J. Intensification of O2/N2 separation by novel magnetically aligned carbonyl iron powders/polysulfone magnetic mixed matrix membranes[J]. Chem Eng Process– Process Intensif, 2020,150:107866.
[50]Wang Y J, Guo Z W, Yang Y J, et al. Fabrication of magnetically responsive anti-fouling and easy-cleaning nanofiber membrane and its application for efficient oil-water emulsion separation[J]. Chin J Chem Eng, 2022, 41: 286-293.
[51]Sairam M, Nataraj S.K, Aminabhavi T.M, et al. Polyaniline Membranes for Separation and Purification of Gases, Liquids, and Electrolyte Solutions[J].Sep Purif Rev, 2006, 35(4): 249-283.
[52]卜佳伟,毛恒洋, 邱鸣慧, 等.高通量自清洁多孔PZT压电陶瓷膜的制备[J]. 膜科学与技术, 2020, 40(1):72-77.
[53]Wiley V, Strathmann, H. Introduction to Membrane Science and Technology[J]. Angew Chem Int Ed,2012, 51(38): 9485-9485.
[54]Joshua D W, Wouter M N, Wiebe M V. Stimuli-Responsive Membranes through Sustainable Aqueous Phase Separation[J]. ACS Appl Polym Mater, 2020, 2(2): 659–667.
[55]Anbharasi V, Ludovic Dumée, Elise D L, et al. Thermo-responsive nanofibrous composite membranes for efficient self-cleaning of protein foulants[J]. J Membr Sci, 2019, 574: 309-317.
[56]Lyly L, Chang Y S, Ng W, et al. Development of membrane distillation by dosing SiO2-PNIPAM with thermal cleaning properties via surface energy actuation[J].J Membr Sci, 2021, 636: 119193.
[57]Cao R, Qin M M, Liu C, et al. Photo- and Thermosensitive Polymer Membrane with a Tunable Microstructure Doped with Graphene Oxide Nanosheets and Poly(N?isopropylacrylamide) for the Application of Light-Cleaning[J]. ACS Appl Mater Interf, 2012,12(12): 14352−14364.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号