DMA-MPC共聚物亲水改性PES膜及抗蛋白吸附性能研究
作者:杨紫云,陈聪,刘巧鸿,李雅倩,彭跃莲,安全福
单位: 北京工业大学,环境与生命学部,北京 100124
关键词: 聚醚砜,亲水改性,两性离子共聚物,多巴胺衍生物,抗蛋白吸附
出版年,卷(期):页码: 2023,43(4):1-9

摘要:
 蛋白污染严重制约着聚醚砜(PES)膜的实际应用,提高膜表面的亲水性是降低蛋白吸附现象的有效方法。本研究,首先在等离子体处理PES膜的表面进行一步沉积接枝聚-多巴胺甲基丙烯酰胺-2-甲基丙烯酰氧乙基磷酸胆碱(DMA-MPC),然后考察改性膜的亲水性与抗污染性。研究结果表明,经过等离子处理,使PES膜表面增加含胺基的反应位点,其与DMA-MPC反应后形成稳定的共价键,在最优改性条件下PES膜的水接触角可降至37.7±1°,在保持牛血清蛋白(BSA)高截留率的同时,通量提高至1060±30 L/(m2⋅h⋅MPa),通量保持率从47±1%提高至73±1%。改性膜在循环测试中展现出优异的稳定性,为减少PES膜表面蛋白吸附提供了新的方法。
Abstract: Adsorption of protein seriously restricts the practical application of polyether sulfone (PES) membrane, and improving the hydrophilicity of membrane surface is an effective method to reduce the phenomenon of membrane fouling. In this study, the surface of a plasma-treated PES membrane was grafted polydopamine methylacrylamide-2-methylacryloxyethyl phosphate choline (DMA-MPC) by one-step deposition, then the hydrophilicity and anti-fouling properties of the modified membrane were investigated. The results showed that plasma treatment increased the number amine reaction sites on PES membrane surface, which react with DMA-MPC and form a stable covalent bond. Under the optimum modification conditions, the water contact angle of PES membrane can be reduced to 37.7±1°, the bovine serum protein (BSA) flux increased to 1060±30 L/(m2⋅h⋅MPa), while maintaining a high rejection rate of BSA at the same time. Moreover, the flux retention rate increased from 47±1% to 73±1%. The modified membrane showed excellent stability in the cycle test, providing a new method to reduce the adsorption of proteins on the PES membrane surface.
杨紫云(1998-),女,山东烟台人,硕士,研究方向膜分离,E-mail:yzy@emails.bjut.edu.cn

参考文献:
 [1] M. Irfan, A. Idris, Overview of PES biocompatible/hemodialysis membranes: PES–blood interactions and modification techniques[J]. Mater. Sci. Eng. C, 2015, 56 574-592.
[2] C. Zhao, J. Xue, F. Ran, S. Sun, Modification of polyethersulfone membranes - A review of methods[J]. Prog. Mater. Sci., 2013, 58(1): 76-150.
[3] 任彦荣, 李志强, 磺化聚醚砜的研究及其应用进展[J]. 2005, 3(2): 23-27.
[4] W. Samtleben, C. Dengler, B. Reinhardt, A. Nothdurft, H.D. Lemke, Comparison of the new polyethersulfone high-flux membrane DIAPES® HF800 with conventional high-flux membranes during on-line haemodiafiltration[J]. Nephrol. Dial. Transplant., 2003, 18(11): 2382-2386.
[5] G.R. Matzke, G.R. Aronoff, A.J. Atkinson, W.M. Bennett, B.S. Decker, K.U. Eckardt, T. Golper, D.W. Grabe, B. Kasiske, F. Keller, J.T. Kielstein, R. Mehta, B.A. Mueller, D.A. Pasko, F. Schaefer, D.A. Sica, L.A. Inker, J.G. Umans, P. Murray, Drug dosing consideration in patients with acute and chronic kidney diseasea clinical update from Kidney Disease: Improving Global Outcomes (KDIGO)[J]. Kidney Int., 2011, 80(11): 1122-1137.
[6] H. Yamasaki, Y. Nagake, H. Makino, Determination of bisphenol A in effluents of hemodialyzers[J]. Nephron, 2001, 88(4): 376-378.
[7] S. Chen, L. Li, C. Zhao, J. Zheng, Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials[J]. Polymer, 2010, 51(23): 5283-5293.
[8] S. Krishnan, C.J. Weinman, C.K. Ober, Advances in polymers for anti-biofouling surfaces[J]. J. Mater. Chem., 2008, 18(29): 3405-3413.
[9] M. He, K. Gao, L. Zhou, Z. Jiao, M. Wu, J. Cao, X. You, Z. Cai, Y. Su, Z. Jiang, Zwitterionic materials for antifouling membrane surface construction[J]. Acta Biomater., 2016, 40 142-152.
[10] S. Jiang, Z. Cao, Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications[J]. Adv. Mater., 2010, 22(9): 920-932.
[11] Y. Chang, W.-J. Chang, Y.-J. Shih, T.-C. Wei, G.-H. Hsiue, Zwitterionic Sulfobetaine-Grafted Poly(vinylidene fluoride) Membrane with Highly Effective Blood Compatibility via Atmospheric Plasma-Induced Surface Copolymerization[J]. ACS Appl. Mater. Interfaces, 2011, 3(4): 1228-1237.
[12] A. Venault, W.-Y. Huang, S.-W. Hsiao, A. Chinnathambi, S.A. Alharbi, H. Chen, J. Zheng, Y. Chang, Zwitterionic Modifications for Enhancing the Antifouling Properties of Poly(vinylidene fluoride) Membranes[J]. Langmuir, 2016, 32(16): 4113-4124.
[13] P.-S. Liu, Q. Chen, S.-S. Wu, J. Shen, S.-C. Lin, Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion[J]. J. Membr.Sci., 2010, 350(1-2): 387-394.
[14] H. Meng, Q. Cheng, C. Li, Polyacrylonitrile-based zwitterionic ultrafiltration membrane with improved anti-protein-fouling capacity[J]. Appl. Surf. Sci., 2014, 303 399-405.
[15] S. Huang, Y. Chen, X. Wang, J. Guo, Y. Li, L. Dai, S. Li, S. Zhang, Preparation of antifouling ultrafiltration membranes from copolymers of polysulfone and zwitterionic poly(arylene ether sulfone)s[J]. Chin. J. Chem. Eng., 2022, 49 100-110.
[16] X. Wang, S. Jing, Y. Liu, S. Liu, Y. Tan, Diblock copolymer containing bioinspired borneol and dopamine moieties: Synthesis and antibacterial coating applications[J]. Polymer, 2017, 116 314-323.
[17] B.L. Wang, T.W. Jin, Y.M. Han, C.H. Shen, Q. Li, Q.K. Lin, H. Chen, Bio-inspired terpolymers containing dopamine, cations and MPC: a versatile platform to construct a recycle antibacterial and antifouling surface[J]. J. Mater. Chem. B., 2015, 3(27): 5501-5510.
[18] Z. Qin, J. Zhao, H. Wang, B. Wang, L. Zheng, H. Zhang, Bioinspired Self-Adhesive Lubricating Copolymer with Bacteriostatic and Bactericidal Synergistic Effect for Marine Biofouling Prevention[J]. ACS Appl. Polym. Mater., 2022, 4(3): 2169-2180.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号