原位化学诱导相转化法聚氯乙烯超滤膜的研制
作者:陈小乐,厍景国,高海富,王暄,武春瑞,吕晓龙
单位: 省部共建分离膜与膜过程国家重点实验室,材料科学与工程学院,天津工业大学,天津 300387
关键词: 聚氯乙烯;超滤膜;N-β-氨乙基-γ-氨丙基三甲氧基硅烷;原位化学诱导
出版年,卷(期):页码: 2023,43(4):21-27

摘要:
 针对超滤膜亲水性不足、渗透性和选择性不能平衡的问题,本文设计了简便高效的原位化学诱导相转化法,在铸膜液中加入可与聚氯乙烯(PVC)的C-Cl键反应的含-NH2的改性剂N-β-氨乙基-γ-氨丙基三甲氧基硅烷(KH792),制备了PVC超滤膜。主要探究了KH792含量对PVC膜结构和性能的影响,结果表明,随着KH792含量从0%增加到12%,PVC膜的平均孔径由56.84 nm增加到86.33 nm,孔径分布相对原膜更加均一;孔隙率由62%提高到88%;初始接触角由87.5°降到70.68°,120 s内动态接触角下降范围由8°增加到20°,亲水性得到提升;在保证牛血清白蛋白(BSA)截留率为95%左右的同时,纯水通量由46 L·m-2·h-1增加到539 L·m-2·h-1。
 
 Aiming at the problems of insufficient hydrophilicity, permeability and selectivity of ultrafiltration membranes, a simple and efficient in situ chemically induced phase conversion method is designed in this paper. In the cast membrane liquid, NH2-containing modifier N- β-aminoethyl-γ-aminopropyl trimethoxysilane(KH792) is added to the C-Cl bond of polyvinyl chloride (PVC), PVC ultrafiltration membrane was prepared. The influence of KH792 content on the structure and properties of PVC membrane was investigated. The results showed that as the content of KH792 increased from 0% to 12%, the average aperture of PVC film increased from 56.84 nm to 86.33 nm, and more homogeneous pore size distribution compared to the original membrane; porosity increased from 62% to 88%; initial contact angle decreased from 87.5° to 70.68°, dynamic contact angle drop range increased from 8° to 20° within 120s; while the bovine serum albumin (BSA) interception rate was guaranteed to be around 95%, the flux of pure water was increased from 46 L·m-2·h-1 increased to 539 L·m-2·h-1. 
 
陈小乐(1997-),女,山西省大同人,硕士研究生,研究方向为分离膜制备与应用;E-mail:1358470640@qq.com

参考文献:
 [1]Fane A G, Wang R, Hu M.X. Synthetic membranes for water purification: status and future[J]. Angewandte Chemie-International Edition, 2015, 54(11): 3368-3386.
[2]Kaner P, Rubakh E, Kim D H, Asatekin A, et al. Zwitterion-containing polymer additives for fouling resistant ultrafiltration membranes[J]. Journal of Membrane Science, 2017, 533: 141-159.
[3]黄凯楠, 吉学智, 王飞, 等. 超滤膜技术概述[J]. 化工进展, 2021, 40(S2): 219-225.
[4]马超,黄海涛,顾计友,刘旸.高分子分离膜材料及其研究进展[J].材料导报, 2016, 30(09): 144-150+157.
[5]Safarpour M, Safikhani A, Vatanpour V. Polyvinyl chloride-based membranes: A review on fabrication techniques, applications and future perspectives[J]. Separation and Purification Technology, 2021, 279: 119678.
[6]Ahmad T, Guria C. Progress in the modification of polyvinyl chloride (PVC) membranes: A performance review for wastewater treatment[J]. Journal of Water Process Engineering, 2022, 45: 102466.
[7]Khakpour S, Jafarzadeh Y, Yegani R. Incorporation of graphene oxide/nanodiamond nanocomposite into PVC ultrafiltration membranes[J]. Chemical Engineering Research and Design, 2019, 152: 60-70.
[8]汤  超, 刘四华, 张仁伟,等. 改性CNC对聚氯乙烯超滤膜性能的影响[J]. 膜科学与技术, 2020, 40(05): 9-15+22.
[9]Mishra G, Mukhopadhyay M. Enhanced antifouling performance of halloysite nanotubes (HNTs) blended poly(vinyl chloride) (PVC/HNTs) ultrafiltration membranes: For water treatment, Journal of Industrial and Engineering Chemistry, 2018, 63: 366-379.
[10]M.M. Aji, S. Narendren, M.K. Purkait, V. Katiyar, Utilization of waste polyvinyl chloride (PVC) for ultrafiltration membrane fabrication and its characterization, Journal of Environmental Chemical Engineering, 2020, 8: 103650.
[11]A. Bhran, A. Shoaib, D. Elsadeq, A. El-gendi, H. Abdallah, Preparation of PVC/PVP composite polymer membranes via phase inversion process for water treatment purposes, Chinese Journal of Chemical Engineering, 2018, 26: 715-722.
[12]H. Wu, T. Li, B. Liu, C. Chen, S. Wang, J.C. Crittenden, Blended PVC/PVC-g-PEGMA ultrafiltration membranes with enhanced performance and antifouling properties, Applied Surface Science, 2018, 455: 987-996.
[13]Fan X, Su Y, Zhao X, et al. Fabrication of polyvinyl chloride ultrafiltration membranes with stable antifouling property by exploring the pore formation and surface modification capabilities of polyvinyl formal[J]. Journal of Membrane Science, 2014, 464: 100-109.
[14]Han Z, Cheng C, Zhang L, et al. Toward robust pH-responsive and anti-fouling composite membranes via one-pot in-situ cross-linked copolymerization[J]. Desalination, 2014, 349: 80-93.
[15]Zhu L, Song H, Zhang D, et al. Negatively charged polysulfone membranes with hydrophilicity and antifouling properties based on in situ cross-linked polymerization[J]. Journal of Colloid and Interface Science, 2017, 498: 136-143.
[16]Chen R, Mao L, Matindi CN, et al. Tailoring the micro-structure of PVC/SMA-g-PEG blend ultrafiltration membrane with simultaneously enhanced hydrophilicity and toughness by in situ reaction-controlled phase inversion[J]. Journal of Membrane Science, 2022, 653: 120545.
[17]滕谋勇, 张文东, 姜传飞,等. 硅烷交联PVC的制备及性能[J]. 塑料助剂, 2008(06):34-38.
[18]李兰军. 硅氧烷交联聚氯乙烯的研究[D]. 四川: 四川大学, 2007.
[19]Liu S, Tang C, She J, et al. Poly(ionic liquid) copolymer blended polyvinyl chloride ultrafiltration membranes with simultaneously improved persistent hydrophilicity and pore uniformity[J]. Separation and Purification Technology, 2022, 295: 121270.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号