凝胶修饰结合同源金属诱导制备UiO-66气体分离膜
作者:丁小凡,鲁金明, 杨建华,刘毅
单位: 大连理工大学 吸附与无机膜研究所,精细化工国家重点实验室,大连 116024
关键词: UiO-66膜;气体分离;凝胶修饰;同源金属诱导;CO2分离
出版年,卷(期):页码: 2023,43(4):28-36

摘要:
 金属有机骨架化合物UiO-66具有孔隙率高、孔道尺寸可调、优良的化学稳定性和热稳定性等特点,是理想的膜分离材料,在气体膜分离领域具有很高的应用价值。本文针对在大孔载体上难以制备连续完整的UiO-66膜的问题,采用凝胶修饰载体和同源金属氧化物诱导相结合的方式,在大孔氧化铝载体上制备致密的UiO-66膜,通过SEM、XRD、EDX等探究了Zr溶胶和合成液配比等因素对成膜的影响,并与传统晶种生长法成膜过程进行对比。实验结果表明Zr溶胶的最佳组成为0.16 g/mL,合成液乙酸最佳摩尔比为1:100,所制备的膜在0.1 MPa条件下,H2的渗透速率为6.20 × 10-8 mol/(m2·s·Pa),H2/CO2、H2/N2、H2/CH4的理想选择性分别为20.79、2.42、2.02。
 The metal-organic framework UiO-66 is an ideal membrane separation material with high porosity, adjustable pore size, excellent chemical and thermal stability, and has high application value in the field of gas membrane separation. In this paper, for the difficulty of preparing continuous and complete UiO-66 membranes on microporous carriers, a combination of gel-modified support and homologous metal oxide induction was used to prepare dense UiO-66 membranes on microporous alumina support, and the effects of Zr-sol and synthesis solution on the membrane formation were investigated by SEM, XRD, EDX, etc., and compared with the membrane formation process by traditional seed growth method. The experimental results showed that the optimal content of Zr-sol was 0.16 g/mL, the optimal molar ratio of synthesis solution acetic acid was 1:100, the permeation of H2 was 6.20×10-8 mol/(m2·s·Pa) at 0.1 MPa, and the ideal selectivity of H2/CO2, H2/N2, and H2/CH4 were 20.79, 2.42, and 2.02, respectively 
丁小凡(1997-),男,山东潍坊人,硕士生,从事MOF膜的制备与应用

参考文献:
[1] Shah M, McCarthy M C, Sachdeva S, et al. Current Status of Metal-Organic Framework Membranes for Gas Separations: Promises and Challenges[J]. Ind & Eng Chem Res, 2012,51(5):2179-2199.
[2] Chuah C Y. Membranes for Gas Separation and Purification Processes[J]. Membranes, 2022,12(6):622.
[3] Zhu Y Q, Gupta K M, Liu Q, et al. Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes[J]. Desalination, 2016,385:75-82.
[4] Chui S, Lo S, Charmant J, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n[J]. Science, 1999,283(5405):1148-1150.
[5] Ferey G. Hybrid porous solids: past, present, future[J]. Chem Soc Rev, 2008,37(1):191-214.
[6] Horike S, Shimomura S, Kitagawa S. Soft porous crystals[J]. Nature Chem, 2009,1(9):695-704.
[7] Venna S R, Carreon M A. Metal organic framework membranes for carbon dioxide separation[J]. Chem Eng Sci, 2015,124:3-19.
[8] Lin X, Jia J H, Hubberstey P, et al. Hydrogen storage in metal-organic frameworks[J]. Crystengcomm, 2007,9(6):438-448.
[9] Huang Y B, Liang J, Wang X S, et al. Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions[J]. Chem Soc Rev, 2017,46(1):126-157.
[10] Betard A, Fischer R A. Metal-Organic Framework Thin Films: From Fundamentals to Applications[J]. Chem Rev, 2012,112(2):1055-1083.
[11] Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002,295(5554):469-472.
[12] Ferey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005,309(5743):2040-2042.
[13] Phan A, Doonan C J, Uribe-Romo F J, et al. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks[J]. Accounts Chem Res 2010,43(1):58-67.
[14] Cavka J H, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. J Am Chem Soc, 2008,130(42):13850-13851.
[15] Liu Y Y, Ng Z F, Khan E A, et al. Synthesis of continuous MOF-5 membranes on porous alpha-alumina substrates[J]. Micropor Mesopor Mat, 2009,118(1-3):296-301.
[16] Ranjan R, Tsapatsis M. Microporous Metal Organic Framework Membrane on Porous Support Using the Seeded Growth Method[J]. Chem Mater, 2009,21(20):4920-4924.
[17] Guo H L, Zhu G S, Hewitt I J, et al. "Twin Copper Source" Growth of Metal-Organic Framework Membrane: Cu-3(BTC)2 with High Permeability and Selectivity for Recycling H-2[J]. J Am Chem Soc, 2009,131(5):1646.
[18] Li X M, Yan Y S, Wang Z B. Continuity Control of b-Oriented MFI Zeolite Films by Microwave Synthesis[J]. Ind  Eng Chem Res, 2010,49(12):5933-5938.
[19] Liu Y, Lu J M, Liu Y. Single-Mode Microwave Heating-Induced Concurrent Out-of-Plane Twin Growth Suppression and In-Plane Epitaxial Growth Promotion of b-Oriented MFI Film under Mild Reaction Conditions[J]. Chem-Asian J, 2020,15(8):1277-1280.
[20] 崔燕雯. 氟化金属有机骨架KAUST-7膜的制备及小分子气体分离性能研究[D]. 大连理工大学, 2022.
[21] 吴飞超. UiO-66系列膜的制备及其液体分离性能研究[D]. 大连理工大学, 2018.
[22] 崔燕雯, 吕金印, 杨建华, 等. 无机柱中心强化的二次生长法制备KAUST-7气体分离膜[J]. 膜科学与技术, 2022,42(5):24-32.
[23] 张宝泉, 孙  亮, 郑孟瑶, 等. 纯硅MFI型分子筛膜的原位合成及其CO2/N2混合气体分离性能研究[J]. 膜科学与技术, 2017,37(2):26-31.
[24] Rong R, Sun Y, Ji T, et al. Fabrication of highly CO2/N2 selective polycrystalline UiO-66 membrane with two-dimensional transition metal dichalcogenides as zirconium source via tertiary solvothermal growth[J]. J Membr Sci, 2020,610:118275.
[25] Yan J, Sun Y, Ji T, et al. Room-temperature synthesis of defect-engineered Zirconium-MOF membrane enabling superior CO2/N2 selectivity with zirconium-oxo cluster source[J]. J Membr Sci, 2022,653:120496.
[26] Zhou S, Shekhah O, Ramírez A, et al. Asymmetric pore windows in MOF membranes for natural gas valorization[J]. Nature, 2022,606(7915):706-712.
[27] 薛佳佳, 徐瑞松, 李  琳, 等. UiO-66/PI混合基质气体分离膜的研究[J]. 膜科学与技术, 2020,40(06):71-78.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号