可用于镁锂分离的双荷电纳滤膜研制
作者:苗闪闪,史乐,宋姿萍,厍景国,陈小乐,武春瑞,吕晓龙
单位: 省部共建分离膜与膜过程国家重点实验室,材料科学与工程学院,天津工业大学,天津300387
关键词: 纳滤膜;氨乙基哌嗪;均苯三甲酰氯;镁锂分离
出版年,卷(期):页码: 2023,43(4):37-43

摘要:
 近年来,随着新能源材料的快速发展,锂的需求量大幅上涨。为满足日益增长的锂需求,采用纳滤技术从盐湖提锂已成为一种趋势。通过调控纳滤膜表面电荷和孔径以提高Mg2+的截留率和Li+的渗透率,可显著提高Mg2+/Li+选择性。本文采用氨乙基哌嗪(AEP)为水相单体、均苯三甲酰氯(TMC)为有机相单体,通过调控水相单体浓度变化,控制分离层致密性和正反面电荷,制备了具有镁锂选择性的平板纳滤膜。研究结果表明:采用该单体制备的纳滤膜对MgCl2截留率为97.6 %,单盐镁锂分离因子为24.5,在混盐体系中(Mg2+/Li+质量比为20)镁锂分离因子SLi,Mg为44.8。
  In recent years, with the rapid development of new energy materials, the demand for lithium has risen dramatically. To meet the increasing demand for lithium, it has become a trend to use nanofiltration technology to extract lithium from the salt lake. The Mg2+/Li+ selectivity can be significantly improved by modulating the surface charge and pore size of nanofiltration membrane to improve the rejection of Mg2+ and permeation of Li+. In this paper, we used N-aminoethyl piperazine (AEP) as aqueous monomer and trimesoyl chloride (TMC) as organic phase monomer to prepare flat plate nanofiltration membranes with Mg2+/Li+ selectivity by regulating the concentration change of the aqueous phase monomer and controlling the denseness of the separation layer and the charge of the top and flip sides. It was found that the nanofiltration prepared with this monomer had a high MgCl2 rejection to 97.6 % and high LiCl/MgCl2 separation factor to 24.5 in single salt solution. In addition, the prepared nanofiltration membranes had good separation selectivity (SLi, Mg = 44.8) in the mixed salt system (Mg2+/Li+ mass ratio of 20
苗闪闪(1997-),女,河南周口人,硕士研究生,研究方向为复合纳滤膜研制;电子邮件:1575061390@qq.com

参考文献:
 [1] Kavanagh L, Keohane J, Garcia Cabellos G, et al. Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review [J]. Resources, 2018, 7(3):57-85.
[2] Swain B. Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review [J]. J Chem Technol Biot, 2016, 91(10): 2549-2562.
[3] Li X, Mo Y, Qing W, et al. Membrane-based technologies for lithium recovery from water lithium resources: A review [J]. J Membr Sci, 2019, 591:117317-117369.
[4] Shao L, Jin S. Resilience assessment of the lithium supply chain in China under impact of new energy vehicles and supply interruption [J]. J Clean Prod, 2020, 252:119624-119651.
[5] Xu S S, Song J F, Bi Q Y, et al. Extraction of lithium from Chinese salt-lake brines by membranes: Design and practice [J]. J Membr Sci, 2021, 635:119441-119462.
[6] An J W, Kang D J, Tran K T, et al. Recovery of lithium from Uyuni salar brine [J]. Hydrometallurgy, 2012, 117: 64-70.
[7] Liu X H, Chen X Y, He L H, et al. Study on extraction of lithium from salt lake brine by membrane electrolysis [J]. Desalination, 2015, 376: 35-40.
[8] Wang X L, Tsuru T, Nakao S I, et al. The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes [J]. J Membr Sci, 1997, 135: 19-32.
[9] Xu F, Dai L H, Wu Y L, et al. Li+/Mg2+separation by membrane separation: The role of the compensatory effect [J]. J Membr Sci, 2021, 636:119542-119550.
[10] Chen K, Zhao S, Lan H, et al. Dual-electric layer nanofiltration membranes based on polyphenol/PEI interlayer for highly efficient Mg2+/Li+ separation [J]. J Membr Sci, 2022, 660:120860-120869. 
[11] Li Y, Wang S, Wu W, et al. Fabrication of positively charged nanofiltration membrane with uniform charge distribution by reversed interfacial polymerization for Mg2+/Li+ separation [J]. J Membr Sci, 2022, 659:120809-120821.
[12] Xu P, Wang W, Qian X, et al. Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio [J]. Desalination, 2019, 449: 57-68.
[13] Liu S H, Wu C R, Hung W S, et al. One-step constructed ultrathin Janus polyamide nanofilms with opposite charges for highly efficient nanofiltration [J]. J Mater Chem A, 2017, 5(44): 22988-22996.
[14] Wang L, Lin Y K, Tang Y H, et al. Fabrication of oppositely charged thin-film composite polyamide membranes with tunable nanofiltration performance by using a piperazine derivative [J]. J Membr Sci, 2021, 634:119405-119415.
[15] Tang C Y Y, Kwon Y N, Leckie J O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes I. FTIR and XPS characterization of polyamide and coating layer chemistry [J]. Desalination, 2009, 242(1-3): 149-167.
[16] Wang Z, Liang S, Kang Y, et al. Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes [J]. Prog Polym Sci, 2021, 122:101450-101480.
[17] Yang Z, Fang W, Wang Z, et al. Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation [J]. J Membr Sci, 2021, 620:118862-118869
[18] Lu D, Ma T, Lin S S, et al. Constructing a selective blocked-nanolayer on nanofiltration membrane via surface-charge inversion for promoting Li+ permselectivity over Mg2+ [J]. J Membr Sci, 2021, 635:119504-119513.
[19] Li W, Shi C, Zhou A, et al. A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2 separation [J]. Sep Purif Technol, 2017, 186: 233-242.
[20] Wu M B, Ye H, Zhu Z Y, et al. Positively-charged nanofiltration membranes constructed via gas/liquid interfacial polymerization for Mg2+/Li+ separation [J]. J Membr Sci, 2022, 644:119942-119949.
[21] Somrani A, Hamzaoui A H, Pontie M. Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO) [J]. Desalination, 2013, 317: 184-192.
[22] Guo C S, Li N, Qian X M, et al. Ultra-thin double Janus nanofiltration membrane for separation of Li+ and Mg2+: "Drag" effect from carboxyl-containing negative interlayer [J]. Sep Purif Technol, 2020, 230:15567-15617.
[23] Li X, Zhang C, Zhang S, et al. Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation [J]. Desalination, 2015, 369:26–36.
[24] Zhang H Z, Xu Z L, Ding H, et al. Positively charged capillary nanofiltration membrane with high rejection for Mg2+ and Ca2+ and good separation for Mg2+ and Li+ [J]. Desalination, 2017, 420: 158-166.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号