用于C3H6/C3H8分离的ZIF-8混合基质炭膜
作者:徐笑峰,徐瑞松,王 月,王同华,李琳
单位: 大连理工大学化工学院精细化工国家重点实验室 炭膜及多孔炭材料研究室,辽宁 大连 116024
关键词: 混合基质膜;炭膜;金属有机框架;气体分离;轻烃分离
出版年,卷(期):页码: 2023,43(4):84-89

摘要:
 以ZIF-8为掺杂剂,通过对混合基质聚合物膜高温炭化制备了混合基质炭膜。通过XRD、SEM、N2吸附等表征方法探究了ZIF-8高温热解前后微观形貌和孔结构特征对炭膜微孔结构和炭结构的影响,并考察了ZIF-8掺杂量与炭化温度对混合基质炭膜C3H6/C3H8渗透分离性能的影响。结果表明,ZIF-8经550℃热处理后仍能够部分保持其微观形貌和孔结构,同时ZIF-8热解衍生多孔炭的引入增加了炭膜具有筛分功能的极微孔含量,因而显著提高了混合基质炭膜对C3H6/C3H8的分离选择性。在10wt% ZIF-8掺杂量和550℃炭化温度下,所制备ZIF-8混合基质炭膜的C3H6渗透系数高达174 Barrer,C3H6/C3H8分离选择性为14.4,与未掺杂的纯炭膜相比(C3H6/C3H8选择性为5.1)提高了182%,渗透选择性超越了聚合物膜的C3H6/C3H8分离Upper Bound线。
 Mixed matrix carbon membranes were prepared from the pyrolysis of mixed matrix polymeric membranes at high temperature via using ZIF-8 as dopant. The evolution of the morphology and pore structure characteristics of ZIF-8 during pyrolysis and its effect on the micropore structure and carbon structure of carbon membranes were investigated by XRD, SEM, N2 adsorption and other characterization methods. The effects of ZIF-8 doping amount and carbonization temperature on the C3H6/C3H8 separation performance of mixed matrix carbon membranes were also investigated. The results show that ZIF-8 can still partially maintain its microstructure and pore structure after heat treatment at 550℃. Meanwhile, the introduction of the ZIF-8 derived nanoporous carbon increases the content of ultramicropores with molecular sieving function in carbon membrane, which significantly enhances the C3H6/C3H8 selectivity of mixed matrix carbon membranes. Compared to the carbon membranes without ZIF-8 doping (the C3H6/C3H8 selectivity is 5.1), the C3H6/C3H8 selectivity of ZIF-8-based mixed carbon membrane with the doping amount of 10wt% and prepared at carbonization temperature of 550℃ is improved by 182% with the C3H6 permeability of 174 Barrer, which exceeds the C3H6/C3H8 upper bounds of polymeric membranes.
徐笑峰(1996—),男,内蒙古通辽市,硕士研究生,研究方向:气体分离膜技术、炭分子筛膜、混合基质膜;E-mail: 17854217558@163.com

参考文献:
 [1] Pan Y., Tao L., Lestari G., et al. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes[J]. Journal of Membrane Science, 2012, 390-391: 93-98.
[2] Sholl D. S., Lively R. P.. Seven chemical separations to change the world[J]. Nature, 2016, 532: 435-437.
[3] 张敬升, 李东风. 炼厂干气的回收和利用技术概述[J]. 化工进展, 2015, 34: 3207-3215.
Zhang J. S., Li D. F.. Overview on recovery technologies of refinery dry gas[J]. Chemical Industry and Engineering Progress, 2015, 34: 3207-3215.
[4] 汤明, 肖泽仪, 史晓燕. 膜技术在含烃类气体分离中的研究与前景[J]. 过滤与分离, 2005, 4: 21-23.
Tang M, Xiao Z. Y., Shi X. Y.. Application and Development of Membrane Technology in Hydrocarbon Separation from Mixed Gas[J]. Journal of Filtration & Separation, 2005, 4: 21-23.
[5] 徐南平.无机膜的发展现状与展望[J]. 化工进展, 2000, 4: 5-9.
Xu N. P.. Development status and prospect of inorganic membrane[J]. Chemical Industry and Engineering Progress, 2000, 4: 5-9.
[6] Park S., Abdul Hamid M. R., Jeong H.. Highly Propylene-Selective Mixed-Matrix Membranes by in Situ Metal–Organic Framework Formation Using a Polymer-Modification Strategy[J]. ACS Applied Materials & Interfaces, 2019, 11: 25949-25957.
[7] Liu Y., Chen Z., Liu G., et al. Conformation-Controlled Molecular Sieving Effects for Membrane-Based Propylene/Propane Separation[J]. Advanced Materials, 2019, 31: 1807513.
[8] Yang F., Mu H., Wang C., et al. Morphological Map of ZIF-8 Crystals with Five Distinctive Shapes: Feature of Filler in Mixed-Matrix Membranes on C3H6/C3H8 Separation[J]. Chemistry of Materials, 2018, 30: 3467-3473.
[9] Rungta M., Wenz G. B., Zhang C., et al. Carbon molecular sieve structure development and membrane performance relationships[J]. Carbon, 2017, 115, 237-248.
[10] Liao K., Japip S., Lai J., et al. Boron-embedded hydrolyzed PIM-1 carbon membranes for synergistic ethylene/ethane purification[J]. Journal of Membrane Science, 2017, 534, 92-99.
[11] Chu Y., Yancey D., Xu L., et al. Iron-containing carbon molecular sieve membranes for advanced olefin/paraffin separations[J]. Journal of Membrane Science, 2018, 548: 609-620.
[12] Kim S. J., Kwon Y., Kim D., et al. A Review on Polymer Precursors of Carbon Molecular Sieve Membranes for Olefin/Paraffin Separation[J], Membranes, 2021, 11: 482.
[13] Kim S. J., Kim J. K., Cho Y. H., et al. Aging-resistant carbon molecular sieve membrane derived from pre-crosslinked Matrimid for propylene/propane separation[J]. Journal of Membrane Science, 2021, 636: 119555.
[14] Jiao W., Ban Y., Shi Z., et al. High performance carbon molecular sieving membranes derived from pyrolysis of metal–organic framework ZIF-108 doped polyimide matrices[J]. Chemical Communications, 2016, 52: 13779-13782.
[15] Shin J. H., Yu H. J., et al. Fluorine-containing polyimide/polysilsesquioxane carbon molecular sieve membranes and techno-economic evaluation thereof for C3H6/C3H8 separation[J]. Journal of Membrane Science, 2020, 598: 117660.
[16] Yoon J. W., Kim A., Kim M. J., et al. Low-temperature Cu(I) loading on a mesoporous Metal–Organic framework for adsorptive separation of C3H6/C3H8 mixtures[J]. Microporous and Mesoporous Materials, 2019, 279: 271-277.
[17] Chen D., Shang H., Zhu W., et al. Reprint of: Transient breakthroughs of CO2/CH4 and C3H6/C3H8 mixtures in fixed beds packed with Ni-MOF-74[J]. Chemical Engineering Science, 2015, 124: 109-117.
[18] Cui W. G., Hu T. L., Bu X. H.. Metal–Organic Framework Materials for the Separation and Purification of Light Hydrocarbons[J]. Advanced Materials, 2019, 32: 1806445.
[19] Zheng B., Maurin G.. Mechanical Control of the Kinetic Propylene/Propane Separation by Zeolitic Imidazolate Framework-8[J]. Angewandte Chemie International Edition, 2019, 58: 13734-13738.
[20] Torad N. L., Hu M., Kamachi Y., et al. Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals[J]. Chemical Communications, 2013, 49: 2521.
[21] Pan Y., Liu Y., Zeng G., et al. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system[J]. Chemical Communications, 2011, 47: 2071-2073.
[22] Karimi A., Khataee A., Vatanpour V., et al. High-flux PVDF mixed matrix membranes embedded with size-controlled ZIF-8 nanoparticles[J]. Separation and Purification Technology, 2019, 229: 115838.
[23] Chaikittisilp W., Hu M., Wang H., et al. Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes[J]. Chemical Communications, 2012, 48: 7259-7261.
[24] Wang C. Y., Zhang J., Zhang Q. Y., et al. Preparation and adsorption properties of ZIF-8 based porous carbon[J]. Chemical Industry and Engineering Progress, 2017, 36: 299-304.
[25] Moore T. T., Koros W. J.. Gas sorption in polymers, molecular sieves, and mixed matrix membranes[J]. Journal of Applied Polymer Science, 2007, 104: 4053-4059.
[26] Xu R. S., He L., Li L., et al. Ultraselective carbon molecular sieve membrane for hydrogen purification[J]. Journal of Energy Chemistry, 2020, 50: 16-24.
[27] Burns R. L., Koros W. J.. Defining the challenges for C3H6/C3H8 separation using polymeric membranes[J]. Journal of membrane science, 2003, 211: 299-309.
[28] Swaidan R. J., Ma X., Pinnau I.. Spirobisindane-based polyimide as efficient precursor of thermally-rearranged and carbon molecular sieve membranes for enhanced propylene/propane separation[J]. Journal of Membrane Science, 2016, 520: 983-989.
[29] Xu L., Rungta M., Brayden M. K., et al. Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations[J]. Journal of Membrane Science, 2012: 423-424: 314-323.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号