聚酰亚胺膜在稀有气体分离中的性能研究
作者:李思琪,赵丹,李晖,陈占营,任吉中
单位: 1 洁净能源国家实验室,大连化学物理研究所,大连 116023; 2 中国科学院大学,北京 100049; 3 禁核试北京国家数据中心和北京放射性核素实验室,北京,100085
关键词: 聚酰亚胺;稀有气体分离;膜分离;热处理
出版年,卷(期):页码: 2023,43(4):90-98

摘要:
 稀有气体通常利用沸点的差异进行深冷分离,相对于这种传统方法,膜技术具有高效、低耗和环保等优异性能。在膜技术中,膜材料的选择及其后处理是影响气体分离效果的重要因素。本文选择了两种不同聚酰亚胺,PI-1 (BTDA-MDA/TDA)和PI-2 (PMDA/BTDA-TDA),研究其单体结构对于稀有气体分离性能的影响。并在此基础上选择性能较为优异的PI-2膜进行不同条件的热处理,研究热处理温度对其气体分离性能的影响。研究发现,通过改变聚酰亚胺的共聚组成,可以调节分离膜的气体选择性与渗透性。热处理会改变膜内分子链堆积、部分膜结构的生成或消失以及去除残余溶剂的塑化作用,进而改变膜的渗透分离性能。通过控制热处理条件,可以使膜的渗透性与选择性同时提升,He渗透系数增加至19.1 Barrer,He/CH4选择性提高了54%,O2/Xe选择性提升99%。
  Cryogenic distillation is carried out by using the difference in the boiling points of gases to separate noble gases. Compared with this traditional method, membrane technology has excellent properties such as higher efficiency, lower consumption, and being more environmentally friendly. The selection of membrane materials and their post-treatment are critical to the gas separation efficiency of membrane technology. In this paper, the polyimides PI-1 (BTDA-MDA/TDA) and PI-2 (PMDA/BTDA-TDA) were selected to study the effect of their distinct structures on the separation performance of noble gases. After that, the polyimide membrane with excellent performance was heat treated under different conditions, and the influence of heat treatment temperature on gas separation performance was investigated. According to the research, by changing the composition of the polyimide, the noble gas selectivity and permeability of this polyimide membrane could be adjusted. Different heat treatment conditions could change the permeability and separation performance of the membrane by changing the chain accumulation in the membrane, forming part of the membrane structure, and removing the plasticizing effect of the residual solvent. By controlling the heat treatment conditions, the permeability and selectivity of the membrane can be improved at the same time. The He permeability coefficient increased to 19.1 Barrer, and the selectivity of He/CH4 increased by 54%, while the selectivity of O2/Xe increased by 99%.
李思琪(1998-),女,山东菏泽人,硕士生,主要从事气体分离方面的研究

参考文献:
 [1] Banerjee D, Cairns A J, Liu J, et al. Potential of metal–organic frameworks for separation of xenon and krypton[J]. Acc Chem Res, 2015, 48(2): 211-219.
 [2] Shishova N V, Ugraitskaya S V, Shvirst N E, et al. Influence of helium, xenon, and other noble gases on cryopreservation of hela and l929 cell lines[J]. Cryobiology, 2021, 102: 114-120.
 [3] Kaplan K H. Helium shortage hampers research and industry[J]. Phys Today, 2007, 60(6): 31-32.
 [4] Scholes C, Ghosh U. Review of membranes for helium separation and purification[J]. Membranes (Basel), 2017, 7(1): 9.
 [5] Rufford T E, Chan K I, Huang S H, et al. A review of conventional and emerging process technologies for the recovery of helium from natural gas[J]. Adsorp Sci Technol, 2014, 32(1): 49-72.
 [6] Leyarovski E I, Georgiev J K, Nikolov B V, et al. Continuous process for the separation of Ne-He mixtures at 80 K[J]. Cryogenics (Guildf), 1988, 28(9): 599-604.
 [7] Rege S U, Yang R T. Kinetic Separation of oxygen and argon using molecular sieve carbon[J]. Adsorption, 2000, 6(1): 15.
 [8] Clausi D T, Koros W J. Formation of defect-free polyimide hollow fiber membranes for gas separations[J]. J Membr Sci, 2000, 167(1): 79-89.
 [9] 丁天. 膜分离与变压吸附组合工艺在天然气提氦中的应用初探[J]. 科学技术创新, 2021(15): 7-8.
[10] Bernardo P, Drioli E, Golemme G. Membrane Gas Separation: A review/state of the art[J]. Ind Eng Chem Res, 2009, 48(10): 4638-4663.
[11] Wind J D, Paul D R, Koros W J. Natural gas permeation in polyimide membranes[J]. J Membr Sci, 2004, 228(2): 227-236.
[12] Kim T, Koros W J, Husk G R. Advanced gas separation membrane materials: rigid aromatic polyimides[J]. Sep Sci Technol, 1988, 23(12-13): 1611-1626.
[13] Ayala D. Gas separation properties of aromatic polyimides[J]. J Membr Sci, 2003, 215(1-2): 61-73.
[14] Alaslai N, Ghanem B, Alghunaimi F, et al. Pure- and mixed-gas permeation properties of highly selective and plasticization resistant hydroxyl-diamine-based 6FDA polyimides for CO2/CH4 separation[J]. J Membr Sci, 2016, 505: 100-107.
[15] Liaw D, Wang K, Huang Y, et al. Advanced polyimide materials: Syntheses, physical properties and applications[J]. Prog Polym Sci, 2012, 37(7): 907-974.
[16] Soroko I, Livingston A. Impact of TiO2 nanoparticles on morphology and performance of crosslinked polyimide organic solvent nanofiltration (OSN) membranes[J]. J Membr Sci, 2009, 343(1-2): 189-198.
[17] Xiao Y, Low B T, Hosseini S S, et al. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review[J]. Prog Polym Sci, 2009, 34(6): 561-580.
[18] Hosseini S S, Chung T S. Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification[J]. J Membr Sci, 2009, 328(1-2): 174-185.
[19] Wang Z, Wang D, Zhang F, et al. Tröger's base-based microporous polyimide membranes for high-performance gas separation[J]. ACS Macro Lett, 2014, 3(7): 597-601.
[20] Xiao Y, Dai Y, Chung T, et al. Effects of brominating Matrimid polyimide on the physical and gas transport properties of derived carbon membranes[J]. Macromolecules, 2005, 38(24): 10042-10049.
[21] Guzmán-Lucero D, Palomeque-Santiago J, Camacho-Zúñiga C, et al. Gas permeation properties of soluble aromatic polyimides based on 4-Fluoro-4,4'-Diaminotriphenylmethane[J]. Materials (Basel), 2015, 8(4): 1951-1965.
[22] Hacarlioglu P, Toppare L, Yilmaz L. Effect of preparation parameters on performance of dense homogeneous polycarbonate gas separation membranes[J]. J Appl Polym Sci, 2003, 90(3): 776-785.
[23] Qiao X, Chung T, Pramoda K P. Fabrication and characterization of BTDA-TDI/MDI (P84) co-polyimide membranes for the pervaporation dehydration of isopropanol[J]. J Membr Sci, 2005, 264(1-2): 176-189.
[24] Zhang C, Li P, Cao B. Decarboxylation crosslinking of polyimides with high CO2/CH4 separation performance and plasticization resistance[J]. J Membr Sci, 2017, 528: 206-216.
[25] Qiu W, Chen C, Xu L, et al. Sub-Tg cross-linking of a polyimide membrane for enhanced CO2 plasticization resistance for natural gas separation[J]. Macromolecules, 2011, 44(15): 6046-6056.
[26] Fuhrman C, Nutt M, Vichtovonga K, et al. Effect of thermal hysteresis on the gas permeation properties of 6FDA-based polyimides[J]. J Appl Polym Sci, 2004, 91(2): 1174-1182.
[27] Zhao D, Ren J, Wang Y, et al. High CO2 separation performance of Pebax®/CNTs/GTA mixed matrix membranes[J]. J Membr Sci, 2017, 521: 104-113.
[28] 李悦生, 丁孟贤, 徐纪平. 聚酰亚胺气体分离膜材料的结构与性能[J]. 高分子通报, 1998(3): 3-10.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号