PA/PMIA复合纳滤膜的制备及性能研究
作者:张冉,王磊,司会芳,李琳,王华,王同华
单位: 1. 大连理工大学化工学院 精细化工国家重点实验室 大连市膜材料与膜过程重点实验室 炭素材料研究室 炭膜及多孔材料课题组,辽宁 大连 116024;2. 大连理工大学体育与健康学院,辽宁 大连 116024
关键词: 聚间苯二甲酰间苯二胺;界面聚合;纳滤膜;聚酰胺
出版年,卷(期):页码: 2023,43(4):129-135

摘要:
 以聚间苯二甲酰间苯二胺(PMIA)为膜材料,LiCl和H2O为添加剂,N,N-二甲基乙酰胺(DMAc)为溶剂,通过相转化法制备PMIA超滤基膜。以哌嗪(PIP)为水相单体,均苯三甲酰氯(TMC)为油相单体,通过界面聚合法制备PA/PMIA复合纳滤膜。考察了单体浓度对复合纳滤膜渗透分离性能的影响,当单体浓度增加时,复合纳滤膜的水通量下降,Na2SO4的截留率增大;水相单体PIP浓度为0.5wt.%,油相单体TMC浓度为0.07wt.%,反应时间为30s,后处理温度为70℃,后处理时间为3min时,所制备的PA/PMIA复合纳滤膜的水通量为50.89L/(m2•h•bar),Na2SO4截留率为98.24%,酰胺(PA)层厚度为40nm,接触角为44°;PA/PMIA复合纳滤膜在有机溶剂和酸碱中浸泡30d后,仍保持稳定的Na2SO4截留率。
 PMIA ultrafiltration basement membrane was prepared by phase conversion using polyisophthaloyl-m-phenylenediamine (PMIA) as membrane material, LiCl and H2O as non-solvent additives, and N,N-dimethylacetamide (DMAc) as solvent. PA/PMIA composite nanofiltration membrane was prepared by interfacial polymerization with piperazine (PIP) as aqueous monomer and benzenetricarbonyl chloride (TMC) as oil-phase monomer. The effect of monomer concentration on the permeation and separation performance of composite nanofiltration membrane was investigated, and when the monomer concentration increased, the water flux of the membrane decreased and the interception rate of Na2SO4 increased. When the concentration of aqueous monomer PIP was 0.5wt.%, the concentration of TMC of oil-phase monomer was 0.07wt.%, the reaction time was 30s, the post-treatment temperature was 70°C, and the post-treatment time was 3min, The water flux of the prepared PA/PMIA composite nanofiltration membrane was 50.89L/(m2•h•bar), the retention rate of Na2SO4 was 98.24%, the thickness of amide (PA) layer was 40nm, and the contact angle was 44°. The PA/PMIA composite nanofiltration membrane had stable Na2SO4 retention after 30 days immersion in organic solvents and acids and bases.
张冉(1998.06.10),女,湖北省孝感市,硕士研究生,复合纳滤膜孔结构调控,E-mail:zhangran123@mail.dlut.edu.cn

参考文献:
 [1] Mamba F B, Mbuli B S, Ramontja J. Recent advances in biopolymeric membranes towards the removal of emerging organic pollutants from water[J]. Membranes (Basel), 2021, 11(11): 798.
 [2] 史乐, 刘四华, 厍景国, 等. 新型分盐纳滤膜的制备与表征[J]. 膜科学与技术, 2021, 41(04): 1-7.
 [3] 任元丹, 蒋元力, 张婕, 等. 新型耐溶剂纳滤膜的性能表征[J]. 化工新型材料, 2012, 40(12): 79-81, 84.
 [4] Lau W J, Ahmad F I. Nanofiltration membranes[M]//:Taylor and Francis;CRC Press, 2016.
 [5] 魏恋璎, 陈明星, 张威, 等. 芳香聚酰胺材料在膜分离领域应用研究进展[J]. 膜科学与技术, 2022, 42(1): 155-169.
 [6] 何鹏鹏, 赵颂, 毛晨岳, 等. 耐溶剂复合纳滤膜的研究进展[J]. 化工学报, 2021, 72(02): 727-747.
 [7] Zhang H, He Q, Luo J, et al. Sharpening nanofiltration: strategies for enhanced membrane selectivity[J]. ACS Appl Mater Interfaces, 2020, 12(36): 39948-39966.
 [8] Jin L, Hu L, Liang S, et al. A novel organic solvent nanofiltration (osn) membrane fabricated by poly(m-phenylene isophthalamide) (pmia) under large-scale and continuous process[J]. J Membr Sci, 2022, 647: 120259.
 [9] 司会芳. 芳香族聚酰胺耐溶剂纳滤膜的制备及性能研究[D]: 大连理工大学, 2018.
[10] Ding J, Wu H, Wu P. Development of nanofiltration membranes using mussel-inspired sulfonated dopamine for interfacial polymerization[J]. J Membr Sci, 2020, 598: 117658.
[11] 包亚晴, 黄李金鸿, 李柳, 等. 基于界面聚合法的纳滤膜性能优化研究进展[J]. Xian Dai Hua Gong, 2021, 41(11): 28-33.
[12] Zhang M, You X, Xiao K, et al. Modulating interfacial polymerization with phytate as aqueous-phase additive for highly-permselective nanofiltration membranes[J]. J Membr Sci, 2022, 657: 120673.
[13] Hao Z, Tian X, Mankol V, et al. Polyamide nanofiltration membrane fabricated with ultra-low concentration triaminoguanidine showing efficient desalination performance[J]. J Membr Sci, 2023, 672: 121449.
[14] 司会芳, 李琳, 杨文华, 等. 聚间苯二甲酰间苯二胺超滤膜的制备与性能研究[J]. 膜科学与技术, 2018, 38(4): 49-55.
[15] Bandehali S, Parvizian F, Ruan H, et al. A planned review on designing of high-performance nanocomposite nanofiltration membranes for pollutants removal from water[J]. J Ind Eng Chem, 2021, 101: 78-125.
[16] Ma Y X, Shi F M, Wu M N, et al. Effect of additives in the casting solutions on the morphology and performance of pvdf membranes[J]. Advanced Materials Research, 2011, 391-392: 1412-1416.
[17] Xie W, Geise G M, Freeman B D, et al. Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine[J]. J Membr Sci, 2012, 403-404: 152-161.
[18] 杨哲, 戴若彬, 文越, 等. 新型纳滤膜在水处理与水回用中的研究进展[J]. 环境工程, 2021, 39(7): 1-12.
[19] Zhe Y, Hao G, Chuyang Y T. The upper bound of thin-film composite (tfc) polyamide membranes for desalination[J]. J Membr Sci, 2019, 590(C): 117297.
[20] Yang Z, Zhou Z, Guo H, et al. Tannic acid/fe3+ nanoscaffold for interfacial polymerization: toward enhanced nanofiltration performance.[J]. Environ Sci Technol, 2018, 52(16): 9341-9349.
[21] Qi Y, Zhu L, Shen X, et al. Polythyleneimine-modified original positive charged nanofiltration membrane: removal of heavy metal ions and dyes[J]. Sep Purif Technol, 2019, 222: 117-124.
[22] 成琪, 孟永涛, 毕秋艳, 等. 适用于镁锂分离纳滤膜的筛选[J]. 无机盐工业, 2020, 52(4): 42-48.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号