聚合物渗透汽化脱盐膜的研究进展
作者:闫佳华,曹兵,李培,张睿
单位: 1北京化工大学化学工程学院;2北京化工大学材料科学与工程学院,北京 100029
关键词: PV膜,脱盐,海水淡化,渗透汽化
出版年,卷(期):页码: 2023,43(4):172-183

摘要:
 高盐废水的资源化利用是工业界和学术界的研究热点。膜法脱盐是实现高盐废水资源化利用的有效方法。近年来,针对脱盐设计的渗透汽化膜(PV)的水通量是有机溶剂脱水的几十倍以上。如果能将PV的高截盐率、高水通量的优势与低品质热源有效结合,PV脱盐有望为高盐废水的资源化利用提供有力的支撑。高渗透通量、高截盐率、运行稳定且适于处理成分复杂的高浓盐水的PV脱盐膜仍是目前的研究热点。本文总结了近5年聚合物渗透汽化脱盐膜的研究进展,主要包括PV脱盐膜常用的材料、膜材料的分子结构设计及其改性方法、PV膜的脱盐性能等方面的内容。
 Utilization of highly salty wastewater is a hot topic both in industry and academia. Membrane desalination is an effective method to fulfill this requirement. In recent years, water fluxes of pervaporation membranes (PV) designed for desalination have been dozens of times higher than that of PV membranes used for organic solvent dehydration. If low quality heat source is available for PV desalination process, this technology has a great potential for recycling highly salty wastewater. The key problem of PV desalination technology is still the lack of membrane materials with high flux, high salt rejection, excellent stability and suitable for treating concentrated brine solutions with complex composition. This paper summarizes the research progress of polymeric pervaporation desalination membranes in recent 5 years, including commonly used membrane materials, membrane material designs and modification methods, desalination performance and other aspects.
闫佳华(1999—),女,河北省邢台市,硕士研究生,研究方向为渗透汽化分离膜。E-mail:yanjiahua2021@163.com

参考文献:
 [1] GREENLEE L F, LAWLER D F, FREEMAN B D, et al. Reverse osmosis desalination: water sources, technology, and today's challenges [J]. Water Res, 2009, 43(9): 2317-2348.
[2] CAI J, CAO X-L, ZHAO Y, et al. The establishment of high-performance anti-fouling nanofiltration membranes via cooperation of annular supramolecular Cucurbit[6]uril and dendritic polyamidoamine [J]. Journal of Membrane Science, 2020, 600: 117863.
[3] LIN G-S, CHEN Y-R, CHANG T-H, et al. A high ZIF-8 loading PVA mixed matrix membrane on alumina hollow fiber with enhanced ethanol dehydration [J]. Journal of Membrane Science, 2021, 621: 118935.
[4] WEE S-L, TYE C-T, BHATIA S. Membrane separation process—Pervaporation through zeolite membrane [J]. Separation and Purification Technology, 2008, 63(3): 500-516.
[5] WU D, GAO A, ZHAO H, et al. Pervaporative desalination of high-salinity water [J]. Chemical Engineering Research and Design, 2018, 136: 154-164.
[6] SUN H, QU Z, YU J, et al. Asymmetric 5-sulfosalicylic acid-PVA catalytic pervaporation membranes for the process intensification in the synthesis of ethyl acetate [J]. Separation and Purification Technology, 2022, 282: 120113.
[7] WANG J, CAO B, ZHANG R, et al. Spray-coated tough thin film composite membrane for pervaporation desalination [J]. Chemical Engineering Research and Design, 2022, 179: 493-501.
[8] MENG J, LAU C H, XUE Y, et al. Compatibilizing hydrophilic and hydrophobic polymers via spray coating for desalination [J]. Journal of Materials Chemistry A, 2020, 8(17): 8462-8468.
[9] MENG J, LI P, CAO B. High-Flux Direct-Contact Pervaporation Membranes for Desalination [J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28461-28468.
[10] ZHANG R, XU X, CAO B, et al. Fabrication of high-performance PVA/PAN composite pervaporation membranes crosslinked by PMDA for wastewater desalination [J]. Petroleum Science, 2018, 15(1): 146-156.
[11] ZHAO P, XUE Y, ZHANG R, et al. Fabrication of pervaporation desalination membranes with excellent chemical resistance for chemical washing [J]. Journal of Membrane Science, 2020, 611: 118367.
[12] LIANG B, LI Q, CAO B, et al. Water permeance, permeability and desalination properties of the sulfonic acid functionalized composite pervaporation membranes [J]. Desalination, 2018, 433: 132-140.
[13] LIU G, SHEN J, LIU Q, et al. Ultrathin two-dimensional MXene membrane for pervaporation desalination [J]. Journal of Membrane Science, 2018, 548: 548-558.
[14] KAMINSKI W, MARSZALEK J, TOMCZAK E. Water desalination by pervaporation – Comparison of energy consumption [J]. Desalination, 2018, 433: 89-93.
[15] XIE Z, NG D, HOANG M, et al. Study of Hybrid PVA/MA/TEOS Pervaporation Membrane and Evaluation of Energy Requirement for Desalination by Pervaporation [J]. International Journal of Environmental Research and Public Health, 2018, 15(9): 1913.
[16] PRIHATININGTYAS I, AL-KEBSI A-H A H, HARTANTO Y, et al. Techno-economic assessment of pervaporation desalination of hypersaline water [J]. Desalination, 2022, 527: 115538.
[17] ATIA A A, ALLEN J, YOUNG E, et al. Cost optimization of low-salt-rejection reverse osmosis [J]. Desalination, 2023, 551: 116407.
[18] PRIHATININGTYAS I, LI Y, HARTANTO Y, et al. Effect of solvent on the morphology and performance of cellulose triacetate membrane/cellulose nanocrystal nanocomposite pervaporation desalination membranes [J]. Chemical Engineering Journal, 2020, 388: 124216.
[19] PRIHATININGTYAS I, HARTANTO Y, BALLESTEROS M S R, et al. Cellulose triacetate/LUDOX-SiO2 nanocomposite for synthesis of pervaporation desalination membranes [J]. Journal of Applied Polymer Science, 2020, 138(11): 50000.
[20] PRIHATININGTYAS I, GEBRESLASE G A, VAN DER BRUGGEN B. Incorporation of Al2O3 into cellulose triacetate membranes to enhance the performance of pervaporation for desalination of hypersaline solutions [J]. Desalination, 2020, 474: 114198.
[21] PRIHATININGTYAS I, VOLODIN A, VAN DER BRUGGEN B. 110th Anniversary: Cellulose Nanocrystals as Organic Nanofillers for Cellulose Triacetate Membranes Used for Desalination by Pervaporation [J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 14340-14349.
[22] PRIHATININGTYAS I, HARTANTO Y, VAN DER BRUGGEN B. Ultra-high flux alkali-treated cellulose triacetate/cellulose nanocrystal nanocomposite membrane for pervaporation desalination [J]. Chemical Engineering Science, 2021, 231: 116276.
[23] SELIM A, TOTH A J, HAAZ E, et al. Preparation and characterization of PVA/GA/Laponite membranes to enhance pervaporation desalination performance [J]. Separation and Purification Technology, 2019, 221: 201-210.
[24] XUE Y L, HUANG J, LAU C H, et al. Tailoring the molecular structure of crosslinked polymers for pervaporation desalination [J]. Nat Commun, 2020, 11(1): 1461.
[25] QIN D, LIU H, XIONG T, et al. Enhancing the property of composite pervaporation desalination membrane by fabricating a less resistance substrate with porous but skinless surface structure [J]. Desalination, 2022, 525: 115496.
[26] MENG J, ZHAO P, CAO B, et al. Fabricating thin-film composite membranes for pervaporation desalination via photo-crosslinking [J]. Desalination, 2021, 512: 115128.
[27] ZACHARIAH S, LIU Y-L. Surface engineering through biomimicked structures and deprotonation of poly(vinyl alcohol) membranes for pervaporation desalination [J]. Journal of Membrane Science, 2021, 637: 119670.
[28] LIU Y, TONG Z, ZHU H, et al. Polyamide composite membranes sandwiched with modified carbon nanotubes for high throughput pervaporation desalination of hypersaline solutions [J]. Journal of Membrane Science, 2022, 641: 119889.
[29] FAREED H, QASIM G H, JANG J, et al. Brine desalination via pervaporation using kaolin-intercalated hydrolyzed polyacrylonitrile membranes [J]. Separation and Purification Technology, 2022, 281: 119874.
[30] AUSTRIA H F M, LECAROS R L G, HUNG W-S, et al. Investigation of salt penetration mechanism in hydrolyzed polyacrylonitrile asymmetric membranes for pervaporation desalination [J]. Desalination, 2019, 463: 32-39.
[31] QIN D, ZHANG R, CAO B, et al. Fabrication of high-performance composite membranes based on hierarchically structured electrospun nanofiber substrates for pervaporation desalination [J]. Journal of Membrane Science, 2021, 638: 119672.
[32] HALAKOO E, FENG X. Layer-by-layer assembly of polyethyleneimine/graphene oxide membranes for desalination of high-salinity water via pervaporation [J]. Separation and Purification Technology, 2020, 234: 116077.
[33] TRUONG P V, BLACK R L, COOTE J P, et al. Systematic Approaches To Tailor the Morphologies and Transport Properties of Solution-Cast Sulfonated Pentablock Copolymers [J]. ACS Applied Polymer Materials, 2018, 1(1): 8-17.
[34] AKHTAR F H, VOVUSHUA H, VILLALOBOS L F, et al. Highways for water molecules: Interplay between nanostructure and water vapor transport in block copolymer membranes [J]. Journal of Membrane Science, 2019, 572: 641-649.
[35] WANG Q, LU Y, LI N. Preparation, characterization and performance of sulfonated poly(styrene-ethylene/butylene-styrene) block copolymer membranes for water desalination by pervaporation [J]. Desalination, 2016, 390: 33-46.
[36] YAN M, ZENG F, LI N, et al. Benzene ring crosslinking of a sulfonated polystyrene-grafted SEBS (S-SEBS-g-PSt) membrane by the Friedel–Crafts reaction for superior desalination performance by pervaporation [J]. Journal of Materials Chemistry A, 2022, 10(22): 11990-12004.
[37] YAN M, LU Y, LI N, et al. Hyperbranch-Crosslinked S-SEBS Block Copolymer Membranes for Desalination by Pervaporation [J]. Membranes (Basel), 2020, 10(10):277.
[38] THOMAS E R, JAIN A, MANN S C, et al. Freestanding self-assembled sulfonated pentablock terpolymer membranes for high flux pervaporation desalination [J]. Journal of Membrane Science, 2020, 613: 118460.
[39] LI F, YE J, YANG L, et al. Surface modification of ultrafiltration membranes by grafting glycine-functionalized PVA based on polydopamine coatings [J]. Applied Surface Science, 2015, 345: 301-309.
[40] UGUR NIGIZ F. Graphene oxide?sodium alginate membrane for seawater desalination through pervaporation [J]. Desalination, 2020, 485: 114465.
[41] SUN J, JIA W, GUO J, et al. Amino-embedded carbon quantum dots incorporated thin-film nanocomposite membrane for desalination by pervaporation [J]. Desalination, 2022, 533: 115742.
[42] ZHAO P, MENG J, ZHANG R, et al. Molecular design of chlorine-resistant polymer for pervaporation desalination [J]. Separation and Purification Technology, 2021, 268: 118671.
[43] LIU M, CHEN Q, WANG L, et al. Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite RO membrane by surface grafting of polyvinyl alcohol (PVA) [J]. Desalination, 2015, 367: 11-20.
[44] BANO S, MAHMOOD A, KIM S J, et al. Chlorine resistant binary complexed NaAlg/PVA composite membrane for nanofiltration [J]. Separation and Purification Technology, 2014, 137: 21-27.
[45] YAO Y, ZHANG P, JIANG C, et al. High performance polyester reverse osmosis desalination membrane with chlorine resistance [J]. Nature Sustainability, 2021, 4(2): 138-146.
[46] ZHAO P, YAO B, MENG J, et al. Studies on the fouling behavior and cleaning method of pervaporation desalination membranes for reclamation of reverse osmosis concentrated water [J]. Separation and Purification Technology, 2021, 274: 119034.
[47] LI Y, THOMAS E R, MOLINA M H, et al. Desalination by membrane pervaporation: A review [J]. Desalination, 2023, 547: 116223.
[48] CASTRO-MUNOZ R, AHMAD M Z, FILA V. Tuning of Nano-Based Materials for Embedding Into Low-Permeability Polyimides for a Featured Gas Separation [J]. Front Chem, 2019, 7: 897.
[49] LI L, HOU J, YE Y, et al. Composite PVA/PVDF pervaporation membrane for concentrated brine desalination: Salt rejection, membrane fouling and defect control [J]. Desalination, 2017, 422: 49-58.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号