用于醇脱水的渗透汽化有机膜的改性研究进展
作者:张 琪, 王泽众, 李盈莹, 安宇超, 宋美洁, 李继定, 蔡卫滨
单位: 1.中国矿业大学(北京) 化学与环境工程学院,北京 100083;2.清华大学 化学工程系,北京 100084
关键词: 有机膜;醇脱水;渗透汽化;研究进展
出版年,卷(期):页码: 2023,43(4):184-195

摘要:
 醇是一类重要的基本化学品,在其生产与使用中,脱水精制是一个最为常见的问题。渗透汽化以其流程简单、环境友好等优势,在有机溶剂脱水和有机混合物分离等领域发挥着越来越重要的作用。由于有机膜具有材料廉价易得,制备简单等特点,得到了较多的研究,也最先获得了工业应用。但与无机膜相比,目前有机膜的性能相对有限。因此,对有机膜进行改性,提高其分离性能和稳定性,具有重要的意义。本综述重点介绍了掺入粉体颗粒、表面改性、构建多层膜等3种改性方法的研究进展,并对有机膜的发展进行了展望。
 Alcohol is an important basic chemicals, in its production and use, dehydration refining is one of the most common problems. Pervaporation, with its advantages of simple process and environmental friendliness, is playing an increasingly important role in the fields of organic solvent dehydration and organic mixture separation. Due to the low cost and easy preparation, organic membranes have been studied more and were first used in industry. However, compared with inorganic membranes, the performance of organic pervaporation membranes is relatively low at present. Therefore, it is of great significance to modify organic membranes to improve their separation performance and stability. This review focuses on the research progress of three kinds of modification methods, including incorporation of powder particles, surface modification and construction of multilayer membranes, and the development of organic membranes is prospected.
张琪(1997-),女,河北唐山人,硕士研究生,研究方向为膜分离。Email:zhangqiya666666@163.com

参考文献:
 [1] Jyothi M S, Reddy K R, Soontarapa K, et al. Membranes for dehydration of alcohols via pervaporation[J]. Journal of Environmental Management. 2019, 242: 415-429.
[2] 有机物渗透汽化脱水用共混复合膜的制备与研究[D].浙江大学,2004.
[3] 黎彩莲. 交联改性的聚乙烯醇膜及壳聚糖膜用于乙醇的渗透汽化脱水[D].华中科技大学,2016.
[4] 侯影飞, 许杨, 李海平,等. 渗透汽化膜改性技术研究进展[J]. 膜科学与技术, 2018, 38(1):7.
[5] Cheng X, Pan F, Wang M, et al. Hybrid membranes for pervaporation separations[J]. Journal of Membrane Science. 2017, 541: 329-346.
[6] 蔡卫滨,张琪,谢将煜,宋美洁. 一种SAPO-34/PVA渗透汽化复合膜的制备方法[P]. 北京市:CN114522549A, 2022-05-24.
[7] Huang Z , Shi Y , Wen R , et al. Multilayer poly(vinyl alcohol)–zeolite 4A composite membranes for ethanol dehydration by means of pervaporation[J]. Separation and Purification Technology, 2012, 51(2):126-136.
[8] Premakshi H G , Ramesh K , Kariduraganavar M Y . Modification of crosslinked chitosan membrane using NaY zeolite for pervaporation separation of water–isopropanol mixtures[J]. Chemical Engineering Research & Design, 2015, 94:32-43.
[9] Suhas D P , And T , Raghu A V et al. Mixed matrix membranes of H-ZSM5-loaded poly(vinyl alcohol) used in pervaporation dehydration of alcohols: Influence of silica/alumina ratio[J]. Polymer Engineering & Science, 2014,54:1774-1782.
[10] 霍宇辰,张茜,王晓东,等. 基于MOFs的混合基质膜在渗透汽化中的研究进展[J]. 现代化工. 2020, 40(S1): 33-38.
[11] Li Q, Liu Q, Zhao J, et al. High efficient water/ethanol separation by a mixed matrix membrane incorporating MOF filler with high water adsorption capacity[J]. Journal of membrane science. 2017, 544: 68-78.
[12] Wu G, Li Y, Geng Y, et al. Adjustable pervaporation performance of Zr-MOF/poly(vinyl alcohol) mixed matrix membranes: Adjustable pervaporation performance of Zr-MOF/PVA MMMs[J]. Journal of chemical technology and biotechnology (1986). 2019, 94(3): 973-981.
[13]Cheng X, Jiang Z,ChengX,et al.Water-selective permeation in hybrid membrane incorporating multi-functional hollow ZIF-8 nanospheres[J]. Journal of membrane science, 2018,555: 146-156.
[14]Tao Li, Pan Y , Peinemann K V , et al. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers[J]. Journal of Membrane Science, 2013,425:235-242.
[15]Y Li, L H. Wee,et al. ZIF-71 as a potential filler to prepare pervaporation membranes for bio-alcohol recovery[J]. Journal of Materials Chemistry A.2014,2(26):10034-10040.
[16]Xu HQ ,Feng Wy ,Sheng ML ,et al.Covalent organic frameworks-incorporated thin film composite membranes prepared by interfacial polymerization for efficient CO_2 separation[J].Chinese Journal of Chemical Engineering,2022,43(03):152-160.
[17] Luo R ,  Bai P ,  Lyu J , et al. Fabrication of melamine-based hybrid organic membrane for ethanol/water pervaporation[J]. Microporous and Mesoporous Materials, 2022, 335:111810.
[18] Tang L, Lu Y, Yao L, et al. A highly hydrophilic benzenesulfonic-grafted graphene oxide-based hybrid membrane for ethanol dehydration[J]. RSC Adv, 2020, 10(34): 20358-20367.
[19] Cheng X, Cai W, Chen X, et al. Preparation of graphene oxide/poly(vinyl alcohol) composite membrane and pervaporation performance for ethanol dehydration[J]. RSC advances. 2019, 9(27): 15457-15465.
[20] Song Y, Jiang Z, Gao B, et al. Embedding hydrophobic MoS2 nanosheets within hydrophilic sodium alginate membrane for enhanced ethanol dehydration[J]. Chemical engineering science. 2018, 185: 231-242.
[21] Cao K, Jiang Z, Zhang X, et al. Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix[J]. Journal of membrane science. 2015, 490: 72-83.
[22] Li S, Dai J, Geng X, et al. Highly selective sodium alginate mixed-matrix membrane incorporating multi-layered MXene for ethanol dehydration[J]. Separation and Purification Technology. 2020, 235: 116-206.
[23] Han G L, Chen Z, Cai L F, et al. Poly(vinyl alcohol)/carboxyl graphene mixed matrix membranes: High-power ultrasonic treatment for enhanced pervaporation performance[J]. Journal of Applied Polymer Science. 2019, 137(14): 48526.
[24] Yang G, Xie Z, Doherty C M, et al. Understanding the transport enhancement of poly (vinyl alcohol) based hybrid membranes with dispersed nanochannels for pervaporation application[J]. Journal of membrane science. 2020, 603: 118005.
[25] Gao B, Jiang Z, Zhao C, et al. Enhanced pervaporative performance of hybrid membranes containing Fe3O4@CNT nanofillers[J]. Journal of membrane science. 2015, 492: 230-241.
[26] Unlu D. Fabrication and Application of Silicotungstic Acid/Polyvinyl Alcohol and Phosphomolybdic Acid/Polyvinyl Alcohol Hybrid Membrane for Pervaporative Dehydration of Isopropanol Solution[J]. Macromolecular Research. 2019, 27(10): 998-1008.
[27] Adoor S G, Rajineekanth V, Nadagouda M N, et al. Exploration of nanocomposite membranes composed of phosphotungstic acid in sodium alginate for separation of aqueous–organic mixtures by pervaporation[J]. Separation and Purification Technology. 2013, 113: 64-74.
[28] 李洪深,李十中.蒸汽渗透技术在燃料乙醇生产中的应用研究进展[J].化工进展,2020,39(05):1620-1631.
[29] Uj A, Pg A, Ac B , et al. Single-molecule magnets as novel filler with superior dispersibilty - application of tetranuclear iron (III) molecular magnet [Fe4 (acac)6 (Br-mp)2 ] for pervaporative dehydration of ethanol[J]. Separation and Purification Technology, 2021,277,119038.
[30] Xing R, Wu H, Zhao C, et al. Fabrication of Chitosan Membranes with High Flux by Magnetic Alignment of In Situ Generated Fe3O4[J]. Chemical engineering & technology. 2016, 39(5): 969-978.
[31] Zhao C, Jiang Z, Zhao J, et al. High Pervaporation Dehydration Performance of the Composite Membrane with an Ultrathin Alginate/Poly(acrylic acid)–Fe3O4 Active Layer[J]. Industrial & Engineering Chemistry Research. 2014, 53(4): 1606-1616.
[32] Yang D, Li J, Jiang Z, et al. Chitosan/TiO2 nanocomposite pervaporation membranes for ethanol dehydration[J]. Chemical Engineering Science. 2009, 64(13): 3130-3137.
[33] Gong L, Zhang L, Wang N, et al. In situ ultraviolet-light-induced TiO2 nanohybrid superhydrophilic membrane for pervaporation dehydration[J]. Separation & Purification Technology, 2014, 122:32-40.
[34] Deng Y H, Chen J T, Chang C H, et al. A Drying-Free, Water-Based Process for Fabricating Mixed-Matrix Membranes with Outstanding Pervaporation Performance[J]. Angewandte Chemie International Edition. 2016, 55(41): 12793-12796.
[35] 王杰,陈明,李梅生,周守勇,赵宜江,钟璟.聚乙烯醇/聚多巴胺-氮化碳渗透汽化复合膜的制备[J].膜科学与技术,2018,38(02):37-44.
[36] Liu G, Jiang Z, Cao K, et al. Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles[J]. Journal of membrane science. 2017, 523: 185-196.
[37] Gao B , Jiang Z , Liu G , et al. Enhanced pervaporative performance of hybrid membrane by incorporating amphiphilic carbonaceous material[J]. Journal of Membrane Science, 2016, 520:951-963.
[38] Li S, Geng X, Ma C, et al. Improved performance of three-component structure mixed membrane for pervaporation modified by lignosulfonates@2D-MXene[J]. Separation and Purification Technology. 2021, 276: 119294.
[39] 李赛赛,詹硕,李继定,何静,王璐莹.木质素磺酸钙/海藻酸钠渗透汽化膜的制备及性能调控[J].化工进展,2021,40(S1):311-318.
[40] 邢瑞思. 填充硅骨架材料杂化膜的制备及渗透蒸发脱水性能[D].天津大学,2016.
[41] 那沙沙,李卫星,邢卫红.无机杂化海藻酸钠渗透汽化膜的制备与分离性能对比[J].化工学报,2016,67(09):3730-3737.
[42] Zhang, Chunfang, Wenhai, et al. Graphene Oxide Quantum Dots Incorporated into a Thin Film Nanocomposite Membrane with High Flux and Antifouling Properties for Low-Pressure Nanofiltration[J]. ACS applied materials & interfaces, 2017, 9(12):11082-11094.
[43] 王曼茹. 碳基材料掺杂杂化膜制备及渗透蒸发脱水研究[D].天津大学,2018.
[44] Kalahal P B, Kulkarni A S, Sajjan A M, et al. Fabrication and Physicochemical Study of B2SA-Grafted Poly(vinyl Alcohol)–Graphene Hybrid Membranes for Dehydration of Bioethanol by Pervaporation[J]. Membranes. 2021, 11(2): 110.
[45] 高博鑫. 二维纳米材料杂化膜制备与脱水性能强化[D].天津大学,2017.
[46] Yang H , Wu H , Yao Z Q , et al. Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation[J]. Journal of Materials Chemistry A, 2018,6, 583-591
[47] Kuzminova A, Dmitrenko M, Mazur A, et al. Novel Pervaporation Membranes Based on Biopolymer Sodium Alginate Modified by FeBTC for Isopropanol Dehydration[J]. Sustainability. 2021, 13(11): 6092.
[48] Rlgl A , Mebab C , Btdb C , et al. Alcohol dehydration performance of pervaporation composite membranes with reduced graphene oxide and graphene quantum dots homostructured filler[J]. Carbon, 2020, 162:318-327.
[49] 吴玉萍,王乾廷,孙炜,等. 含椭圆叶片状二氧化硅/聚乙烯醇渗透汽化复合膜制备与性能[J]. 复合材料学报. 2021: 1-8.
[50] Wang Z , Liu J , Shan H , et al. A polyvinyl alcohol‐based mixed matrix membrane with uniformly distributed Schiff base networkfor ethanol dehydration[J]. Journal of Applied Polymer Science, 2020:49308.
[51] Iryani D A, Wulandari N F, Cindradewi A W, et al. Lampung natural zeolite filled cellulose acetate membrane for pervaporation of ethanol-water mixtures[J]. IOP conference series. Earth and environmental science. 2018, 141(1): 12013.
[52] 赵晓旭. 基于沸石咪唑酯骨架结构(ZIFs)材料的渗透汽化膜及其醇脱水性能研究[D].华中科技大学,2019.
[53] Izák P, Godinho M H, Brogueira P, et al. 3D topography design of membranes for enhanced mass transport[J]. Journal of Membrane Science. 2008, 321(2): 337-343.
[54] Kang L , Kang H , Bo W , et al. Micropatterned Ultrathin MOF Membranes with Enhanced Molecular Sieving Property[J]. Angewandte Chemie International Edition, 2018, 57(42): 13892.
[55] Wang MQ,Cheng X,Jiang GJ,et al.Preparation and pervaporation performance of PVA membrane with biomimetic modified silica nanoparticles as coating[J].Journal of Membrane Science, 2022,653:0376-7388.
[56] Huang K, Liu G, Shen J, et al. High-Efficiency Water-Transport Channels using the Synergistic Effect of a Hydrophilic Polymer and Graphene Oxide Laminates[J]. Advanced Functional Materials. 2015, 25(36): 5809-5815.
[57] Liu G, Jiang Z, Yang H, et al. High-efficiency water-selective membranes from the solution-diffusion synergy of calcium alginate layer and covalent organic framework (cof) layer[J]. J Membr Sci, 2019, 572: 557-566.
[58] Pan F, Cao C, Liu G, et al. Enhanced water-selective performance of dual-layer hybrid membranes by incorporating carbon nanotubes[J]. Chemical engineering science. X. 2021, 11: 100-102.
[59] Ding J, Zhang M, Jiang Z, et al. Enhancing the permselectivity of pervaporation membrane by constructing the active layer through alternative self-assembly and spin-coating[J]. Journal of Membrane Science. 2012, 390: 218-225.
[60] Zhao C, Wu H, Li X, et al. High performance composite membranes with a polycarbophil calcium transition layer for pervaporation dehydration of ethanol[J]. Journal of Membrane Science. 2013, 429: 409-417.
[61] Liu X, Cao Y, Li Y, et al. High-performance polyamide/ceramic hollow fiber TFC membranes with TiO2 interlayer for pervaporation dehydration of isopropanol solution[J]. Journal of Membrane Science. 2019, 576: 26-35.
[62] Taymazov D, Zhang H, Li W, et al. Construction of MoS2 hybrid membranes on ceramic hollow fibers for efficient dehydration of isopropanol solution via pervaporation[J]. Separation and Purification Technology. 2021, 277: 119452.
[63] Halakoo E, Feng X. Layer-by-layer assembled membranes from graphene oxide and polyethyleneimine for ethanol and isopropanol dehydration[J]. Chemical Engineering Science. 2020, 216: 115488.
[64] Li J, Si X, Li X, et al. Preparation of acid-resistant PEI/SA composite membranes for the pervaporation dehydration of ethanol at low pH[J]. Separation and Purification Technology. 2018, 192: 205-212.
[65] Liu G , Jiang Z , Cheng X , et al. Elevating the selectivity of layer-by-layer membranes by in situ bioinspired mineralization[J]. Journal of Membrane Science, 2016:364-373.
[66] Shan L, Gong L, Fan H, et al. Spray-assisted biomineralization of a superhydrophilic water uptake layer for enhanced pervaporation dehydration[J]. Journal of Membrane Science. 2017, 522: 183-191.
[67] Zhao J, Pan F, Li P, et al. Fabrication of Ultrathin Membrane via Layer-by-Layer Self-assembly Driven by Hydrophobic Interaction Towards High Separation Performance[J]. ACS Applied Materials & Interfaces. 2013, 5(24): 13275-13283.
[68] Zhao J , Fang C , Zhu Y , et al. Manipulating the interfacial interactions of composite membrane via mussel-inspired approach toward enhanced separation selectivity[J]. J.mater.chem.a, 2015,3, 19980-19988
[69] Di Z ,  Jing Z ,  Ji Y , et al. Facilitated water-selective permeation via PEGylation of graphene oxide membrane[J]. Journal of Membrane ence, 2018, 567:311-320.
[70] Liu G, Jiang Z, Chen C, et al. Preparation of ultrathin, robust membranes through reactive layer-by-layer (LbL) assembly for pervaporation dehydration[J]. Journal of Membrane Science. 2017, 537: 229-238.
[71] Jing M , Zhang M , Hong W , et al. Mussel-inspired fabrication of structurally stable chitosan/polyacrylonitrile composite membrane for pervaporation dehydration[J]. Journal of Membrane Science, 2010, 348(1-2):150-159.
[72] Liu G, Jiang Z, Li C,.et al Layer-by-layer self-assembled nanocomposite membranes via bio-inspired mineralization for pervaporation dehydration[J]. Journal of Membrane science, 2019,570,44-52.
[73] Gao C, Zhang M, Ding J, et al. Pervaporation dehydration of ethanol by hyaluronic acid/sodium alginate two-active-layer composite membranes[J]. Carbohydrate Polymers Scientific & Technological Aspects of Industrially Important Polysaccharides, 2014,99:158-165.
[74] Cheng C, Li P, Shen K, et al. Integrated polyamide thin-film nanofibrous composite membrane regulated by functionalized interlayer for efficient water/isopropanol separation[J]. Journal of Membrane Science. 2018, 553: 70-81.
[75] Li P, Cheng C, Shen K, et al. Enhancing Dehydration Performance of Isopropanol by Introducing Intermediate Layer into Sodium Alginate Nanofibrous Composite Pervaporation Membrane[J]. Advanced Fiber Materials. 2019, 1(2): 137-151.
[76] Tong Z, Liu X, Zhang B. Sulfonated graphene oxide based membranes with enhanced water transport capacity for isopropanol pervaporation dehydration[J]. Journal of Membrane Science. 2020, 612: 118446.
[77] Mbmya A ,  Shhb A ,  Mwc A , et al. Ultraviolet-initiated graft polymerization of acrylic acid onto thin-film polyamide surface for improved ethanol dehydration performance of pervaporation membranes - ScienceDirect[J]. Separation and Purification Technology, 235(C):116155-116155.
[78] 李国庆. 聚氨酯/聚脲型乙醇脱水渗透汽化膜的制备及性能[D].中国石油大学(华东),2018.
[79] 李霈云. 高渗透性纳米纤维基复合渗透汽化膜的构筑及其应用研究[D].东华大学,2022. 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号