二维MXene纳米通道膜的制备及分离性能
作者:汪波,孙阔,张岗,孙春意,王雪玲2,董应超
单位: 1工业生态与环境工程教育部重点实验室,大连理工大学环境学院,大连 116024) (2郑州大学化工学院,郑州 450001
关键词: 水处理;二维材料膜;MXene纳米通道膜;抗溶胀;脱盐;新污染物
出版年,卷(期):页码: 2023,43(5):20-27

摘要:
 水资源短缺是制约社会和工业发展的关键挑战之一,二维(2D)纳米材料构筑的分离膜在水处理领域表现出潜在的应用前景,具有良好的分离性能和可调控的微结构。为了解决二维材料膜存在的制备困难和易溶胀等问题,本研究以多孔氧化铝(Al2O3)为载体,利用真空抽滤技术引入孔径为0.34 μm的改性碳纳米管(CNTs)过渡层,为膜层制备提供更多结合位点和静电结合力,在此过渡层上采用真空抽滤-热交联(180 ℃)技术制备出了二维MXene(Ti3C2Tx)材料分离膜,尽管热交联降低了纳米通道尺寸和渗透性,但提高了抗溶胀性。所制备MX-180膜纳米通道尺寸为5.0 Å,在0.1至0.5 MPa压力下的纳滤测试中,MXene膜的纯水渗透量为8.3 L·m-2·h-1·MPa-1,对KCl、NaCl、MgCl2和四环素截留达到67.87%、79.99%、85.66%和91.34%,具有良好的分离性能和抗溶胀稳定性。
 Water scarcity is one of the key challenges that limit social and industrial development. Separation membranes constructed with two-dimensional (2D) materials show promising potential in water treatment applications due to their excellent separation performance and tunable microstructure. However, there are some issues of high-quality fabrication and swelling for current 2D materials membranes. To address these issues, in this study, a modified carbon nanotubes (CNTs) interlayer (0.34 μm) was introduced onto porous alumina (Al2O3) ceramic substrates via vacuum filtration to provide more binding sites and stronger binding forces for high-quality top-layer formation. Then MXene (Ti3C2Tx) membranes were fabricated on them via vacuum filtration, followed by a thermal cross-linking strategy at 180 ℃. Anti-swelling ability was improved, though both channel size and permeability were reduced during thermal cross-linking process. The MX-180 membrane exhibits a nanochannel size of 5.0 Å, pure water permeance of 8.3 L·m-2·h-1·MPa-1 under the nanofiltration test at 0.1-0.5 MPa pressure, and the rejections of 67.87%, 79.99%, 85.66%, 91.34% for KCl, NaCl, MgCl2, tetracycline indicating promising separation performance and anti-swelling stability. 
汪波(1998-),男,安徽六安人,硕士研究生,研究方向为二维纳米通道的构筑及离子分离研究,E-mail:wang6719@foxmail.com

参考文献:
 [1] Goh P S, Matsuura T, Ismail A F, Ng B C. The Water–Energy Nexus: Solutions towards Energy-Efficient Desalination [J]. Energy Technology, 2017, 5(8): 1136-1155.
[2] Mekonnen M M, Hoekstra A Y. Four billion people facing severe water scarcity [J]. Science Advances, 2(2): e1500323.
[3] Duchanois R M, Porter C J, Violet C, Verduzco R, Elimelech M. Membrane Materials for Selective Ion Separations at the Water–Energy Nexus [J]. Advanced Materials, 2021, 33(38): 2101312.
[4] 张博, 马平安, 邓蕾, 赵海亮, 崔红军, 周晓娟. 膜分离技术在水处理中的研究热点与进展[J]. 安徽化工, 2020, 46(05):24-26+29.
[5] Geise G M, Park H B, Sagle A C, Freeman B D, Mcgrath J E. Water permeability and water/salt selectivity tradeoff in polymers for desalination [J]. Journal of Membrane Science, 2011, 369(1): 130-138.
[6] Robeson L M. Correlation of separation factor versus permeability for polymeric membranes [J]. Journal of Membrane Science, 1991, 62(2): 165-185.
[7] Robeson L M, Hwu H H, Mcgrath J E. Upper bound relationship for proton exchange membranes: Empirical relationship and relevance of phase separated blends [J]. Journal of Membrane Science, 2007, 302(1): 70-77.
[8] Kang Y, Xia Y, Wang H, Zhang X. 2D Laminar Membranes for Selective Water and Ion Transport [J]. Advanced Functional Materials, 2019, 29(29): 1902014.
[9] 郑伟, 孙正明, 张培根, 田无边, 王英, 张亚梅. 二维纳米材料MXene的研究进展[J]. 材料导报, 2017, 31(09):1-14.
[10] 张弦, 吴铭榜, 杨熙, 杨静, 徐志康. Ti3C2Tx(MXene)掺杂薄层复合纳滤膜的制备及其性能研究[J]. 膜科学与技术, 2020, 40(01):8-15.
[11] 张文娟, 寇苗. 二维材料MXene在水处理领域的应用[J]. 材料工程, 2021, 49(09):14-26.
[12] Liu P, Hou J, Zhang Y, Li L, Lu X, Tang Z. Two-dimensional material membranes for critical separations [J]. Inorganic Chemistry Frontiers, 2020, 7(13): 2560-2581.
[13] 曾广勇, 王彬, 张俊, 林清泉, 冯振华. 二维MXene膜的构筑及在水处理应用中的研究进展[J]. 复合材料学报, 2021, 38(07):2078-2091.
[14] 王赛娣, 范议议, 孟秀霞, 靳昀, 张津津, 杨乃涛. 羟基化MXene二维层状膜对重金属离子的脱除[J]. 膜科学与技术, 2022, 42(01):57-64+71.
[15] 王虹, 邵亚楠, 于迪, 尹振. MXene/ C电催化膜制备及对水中盐酸四环素降解性能研究[J]. 膜科学与技术, 2022, 42(06):151-158.
[16] 樊江, 汪唯, 蔡佳浩, 卢纵, 丁力, 魏嫣莹, 王海辉. 二维膜的精密构筑和结构调控策略综述[J]. 化工进展, 2020, 39(12):4823-4836.
[17] Zhang W-H, Yin M-J, Zhao Q, Jin C-G, Wang N, Ji S, Ritt C L, Elimelech M, An Q-F. Graphene oxide membranes with stable porous structure for ultrafast water transport [J]. Nature Nanotechnology, 2021, 16(3): 337-343.
[18] Zhang C J, Pinilla S, Mcevoy N, Cullen C P, Anasori B, Long E, Park S-H, Seral-Ascaso A, Shmeliov A, Krishnan D, Morant C, Liu X, Duesberg G S, Gogotsi Y, Nicolosi V. Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes) [J]. Chemistry of Materials, 2017, 29(11): 4848-4856.
[19] Xu K, Feng B, Zhou C, Huang A. Synthesis of highly stable graphene oxide membranes on polydopamine functionalized supports for seawater desalination [J]. Chemical Engineering Science, 2016, 146: 159-165.
[20] Yuan B, Wang M, Wang B, Yang F, Quan X, Tang C Y, Dong Y. Cross-linked Graphene Oxide Framework Membranes with Robust Nano-Channels for Enhanced Sieving Ability [J]. Environmental Science & Technology, 2020, 54(23): 15442-15453.
[21] Li H, Fu M, Wang S-Q, Zheng X, Zhao M, Yang F, Tang C Y, Dong Y. Stable Zr-Based Metal–Organic Framework Nanoporous Membrane for Efficient Desalination of Hypersaline Water [J]. Environmental Science & Technology, 2021, 55(21): 14917-14927.
[22] Ding L, Li L, Liu Y, Wu Y, Lu Z, Deng J, Wei Y, Caro J, Wang H. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater [J]. Nature Sustainability, 2020, 3(4): 296-302.
[23] Lu Z, Wei Y, Deng J, Ding L, Li Z-K, Wang H. Self-Crosslinked MXene (Ti3C2Tx) Membranes with Good Antiswelling Property for Monovalent Metal Ion Exclusion [J]. ACS Nano, 2019, 13(9): 10535-10544.
[24] Karahan H E, Goh K, Zhang C, Yang E, Y?ld?r?m C, Chuah C Y, Ahunbay M G, Lee J, Tantekin-Ersolmaz ? B, Chen Y, Bae T-H. MXene Materials for Designing Advanced Separation Membranes [J]. Advanced Materials, 2020, 32(29): 1906697.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号