基于PDA@PVDF膜的非分散溶剂萃取法分离和回收高粘度油
作者:刘萌萌,王建强,丁雅杰,周勇,刘富
单位: 1. 浙江工业大学 膜分离与水科学技术研究院,杭州 310014;2. 中国科学院 宁波材料技术与工程研究所 宁波 315201;3. 中国科学院大学,北京 100049
关键词: 油水分离;油回收;非分散溶剂萃取
出版年,卷(期):页码: 2023,43(5):28-36

摘要:
 高粘度油分离及其高效回收在油/水分离领域中是一个巨大的挑战。在众多的油水分离方法中,膜分离法被认为是一种最具前瞻性的策略,但油滴引起的膜污染严重地限制了其应用。我们为此提出了一种非分散溶剂萃取策略,使用聚多巴胺修饰的聚偏氟乙烯纳米纤维膜从水包油乳液中有效地回收高粘度的润滑油。研究结果表明,引入的聚多巴胺薄层有助于表面活性剂稳定的油滴通过膜发生吸附和扩散。系统研究了聚多巴胺改性时间、乳液侧和萃取剂侧流速、乳液浓度对油品回收的影响。优化后的膜在10 h内对水中高粘性油表现出1595 g/m2的累计通量,比原始的聚偏氟乙烯纳米纤维膜高出约2倍。这一研究可能会大大推动这种新方法在从油/水混合物中高效分离和回收粘性油方面的应用。
 
 Viscous oil separation and its highly efficient recovery is a great challenge in oil/water separation fields. Among the many oil/water separation methods, membrane separation is considered to be one of the most forward-looking strategies, but membrane fouling caused by oil droplets severely limits its application. We here propose a nondispersive solvent extraction strategy to efficiently recover viscous lubricant oil from emulsions via a polydopamine modified PVDF nanofiber membrane Janus membrane. The incorporated thin polydopamine layer facilitates the adsorption and diffusion of surfactant stabilized oil droplets through the membrane. We studied the influence of polydopamine coating time, the flow rate on both feed and extraction sides, the weight content of lubricant oil on the recovery and separation of oil. The optimized membrane exhibited a 10 h accumulative flux of 1595 g/m2 for viscous lubricant oil in water emulsion, which was twofold higher than the pristine PVDF nanofiber membrane. The current study might significantly advance application of this novel method for highly efficient separation and recovery of viscous oils from oil/water mixtures.
刘萌萌(1998-),女,辽宁葫芦岛人,硕士,从事高粘度油/水混合物分离过程及应用研究,E-mail:liumengmeng@nimte.ac.cn.

参考文献:
 [1] Sankaranarayanan S, Lakshmi D S, Vivekanandhan S, et al. Biocarbons as emerging and sustainable hydrophobic/oleophilic sorbent materials for oil/water separation[J]. Sustainable Materials and Technologies, 2021, 28: e00268.
[2] Wei Y, Qi H, Gong X, et al. Specially Wettable Membranes for Oil–Water Separation[J]. Advanced Materials Interfaces, 2018, 5(23): 1800576.
[3] Zhu Y, Wang D, Jiang L, et al. Recent progress in developing advanced membranes for emulsified oil/water separation[J]. NPG Asia Materials, 2014, 6(5): e101-e.
[4] Xiang B, Sun Q, Zhong Q, et al. Current research situation and future prospect of superwetting smart oil/water separation materials[J]. Journal of Materials Chemistry A, 2022, 10(38): 20190-20217.
[5] Gupta R K, Dunderdale G J, England M W, et al. Oil/water separation techniques: a review of recent progresses and future directions[J]. Journal of Materials Chemistry A, 2017, 5(31): 16025-16058.
[6] Zhang J, Zhang F, Song J, et al. Electrospun flexible nanofibrous membranes for oil/water separation[J]. Journal of Materials Chemistry A, 2019, 7(35): 20075-20102.
[7] Bai Z, Jia K, Liu C, et al. A Solvent Regulated Hydrogen Bond Crosslinking Strategy to Prepare Robust Hydrogel Paint for Oil/Water Separation[J]. Advanced Functional Materials, 2021, 31(49): 2104701.
[8] Cui J, Zhou Z, Xie A, et al. Bio-inspired fabrication of superhydrophilic nanocomposite membrane based on surface modification of SiO2 anchored by polydopamine towards effective oil-water emulsions separation[J]. Separation and Purification Technology, 2019, 209: 434-442.
[9] 李红林,郝毅,沈舒苏等. GO改性高效油水分离PVDF杂化膜制备及其性能[J].膜科学与技术, 2022, 42(04): 73-80.
[10] Zhou Y, Zhang J, Wang Z, et al. A modified TA-APTES coating: Endowing porous membranes with uniform, durable superhydrophilicity and outstanding anti-crude oil-adhesion property via one-step process[J]. Journal of Membrane Science, 2021, 618: 118703.
[11] Wang M, Xu Z, Guo Y, et al. Engineering a superwettable polyolefin membrane for highly efficient oil/water separation with excellent self-cleaning and photo-catalysis degradation property[J]. Journal of Membrane Science, 2020, 611: 118409.
[12] Fan T, Su Y, Fan Q, et al. Robust Graphene@PPS Fibrous Membrane for Harsh Environmental Oil/Water Separation and All-Weather Cleanup of Crude Oil Spill by Joule Heat and Photothermal Effect[J]. ACS Applied Materials & Interfaces, 2021, 13(16):19377-19386.
[13] Zhang H, Wan Y, Luo J, et al. Drawing on Membrane Photocatalysis for Fouling Mitigation[J]. ACS Applied Materials & Interfaces, 2021, 13(13):14844-14865.
[14] Huang J J, Tian Y, Chen L, et al. Electrospray-Printed Three-Tiered Composite Membranes with Enhanced Mass Transfer Coefficients for Phenol Removal in an Aqueous-Aqueous Membrane Extractive Process[J]. Environmental Science & Technology, 2020, 54(12): 7611-7618.
[15] Rodrigues L N, Sirkar K K, Weisbrod K R, et al. Porous hydrophobic-hydrophilic Janus membranes for nondispersive membrane solvent extraction[J]. Journal of Membrane Science, 2021, 637: 119633.
[16] Liu M, Shen L, Wang J, et al. Continuous separation and recovery of high viscosity oil from oil-in-water emulsion through nondispersive solvent extraction using hydrophobic nanofibrous poly(vinylidene fluoride) membrane[J]. Journal of Membrane Science, 2022, 660: 120876.
[17] 杨静, 徐志康.聚合物分离膜的表界面工程[J]. 膜科学与技术, 2018, 38(01):1-8
[18] Wu J, Ding Y, Wang J, et al. Facile fabrication of nanofiber- and micro/nanosphere-coordinated PVDF membrane with ultrahigh permeability of viscous water-in-oil emulsions[J]. Journal of Materials Chemistry A, 2018, 6(16): 7014-7020.
[19] Yang H C, Waldman R Z, Wu M B, et al. Dopamine: Just the Right Medicine for Membranes[J]. Advanced Functional Materials, 2018, 28(8): 1705327.
[20] Chew N G P, Zhao S, Malde C, et al. Superoleophobic surface modification for robust membrane distillation performance[J]. Journal of Membrane Science, 2017, 541: 162-173.
[21] Liu Y, Qu R, Zhang W, et al. Lotus- and Mussel-Inspired PDA-PET/PTFE Janus Membrane: Toward Integrated Separation of Light and Heavy Oils from Water [J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20545-20556.
[22] 周蓉,任鹏飞,徐志康.预处理对聚多巴胺改性聚丙烯微滤膜性能影响研究[J]. 膜科学与技术, 2015, 35(01): 56-63.
[23] Wang Z, Liu G, Huang S. In Situ Generated Janus Fabrics for the Rapid and Efficient Separation of Oil from Oil-in-Water Emulsions[J]. Angewandte Chemie International Edition, 2016, 55(47): 14610-14613.
[24] Wang Z, Yang X, Cheng Z, et al. Simply realizing “water diode” Janus membranes for multifunctional smart applications[J]. Materials Horizons, 2017, 4(4): 701-708.
[25] Yang X, Yan L, Ran F, et al. Interface-confined surface engineering constructing water-unidirectional Janus membrane[J]. Journal of Membrane Science, 2019, 576: 9-16.
[26] Yang J, Li H-N, Chen Z-X, et al. Janus membranes with controllable asymmetric configurations for highly efficient separation of oil-in-water emulsions[J]. Journal of Materials Chemistry A, 2019, 7(13): 7907-7917.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号