高强度浸没式膜过滤的中试优化研究
作者:李忠华,王海涛,陈董根,许以农,金铁瑛,郭紫阳,金 京,常 娜
单位: 1天津工业大学环境科学与工程学院,天津 300387;2浙江津膜环境科技有限公司,绍兴 312000;3浙江省先进印染制造创新中心,绍兴 312000
关键词: 印染废水;HMF;节能;工艺研究
出版年,卷(期):页码: 2023,43(5):89-97

摘要:
 在“双碳”背景下,节能增效成为污水处理过程中重点考量的重要因素。纺织印染废水处理过程使用的高强度浸没式膜过滤(high-strength submerged membrane filtration,HMF)工艺,曝气为主要能源消耗途径。为探究HMF工艺的最佳运行方式,通过单因素分析法开展中试试验深入考察了曝气孔眼的布置、单帘膜面积、通气量、膜架层数等因素对HMF工艺的节能效果。结果表明:当采用单层膜架,运行条件为曝气孔眼数量6孔,单帘膜面积11 m2,通气量14 m3/h时工艺运行成本最低,为1.30元/吨水,其中吨产水能耗为1.14 kWh,吨水药剂费用为0.28元;当采用双层膜架,相同运行条件时可减少37.5%的通气量,工艺节能效果明显。
 Under the background of"Double carbon", energy-saving and efficiency-enhancing become important factors to be considered in the process of wastewater treatment. Aeration is the main energy consumption way in high-strength submerged membrane filtration (HMF) process for textile printing and dyeing wastewater treatment. In order to explore the best energy-saving method of the HMF process, a pilot test was carried out by single-factor analysis method to deeply investigate the energy-saving effect of the the aeration hole arrangement, the single curtain membrane area, the ventilation volume, the number of membrane frame layer and other factors on the HMF process. The results show that when the single-layer membrane frame is used, the operating conditions are as follows: the number of aeration holes is 6, the single curtain membrane area is 11 m2, and the ventilation rate is 14 m3/h, the operation cost of the process is the lowest, which is 1.30 yuan/ton of water, of which the energy consumption per ton of outlet water is 1.14 kWh and the cost of the ton of water chemical reagent is 0.28 yuan; When the double-layer membrane frame is used, the ventilation volume can be reduced by 37.5% under the same operating conditions, and the energy-saving effect of the process is obvious.
李忠华(1998-),男,内蒙古呼伦贝尔人,硕士研究生,主要研究方向为印染废水成分分析、工业废水处理,E-mail:2245959664@qq.com

参考文献:
 [1] 宋国新, 董雪. 我国“双碳”目标实现的主要挑战与路径选择[J]. 东北亚经济研究, 2022, 6(06): 109-119.
[2] 方丽娜. 复合式MBR膜生物反应器深度处理印染废水的试验研究[J]. 中国资源综合利用, 2018, 36(10): 45-48.
[3]Wang R, Jin X, Wang Z Y, et al. A multilevel reuse system with source separation process for printing and dyeing wastewater treatment: A case study[J]. Bioresour Technol, 2018, 247: 1233-1241.
[4]Wang X, Huang F, Yu M, et al. Multilayer adsorption of organic dyes on coal tar-based porous carbon with ultra-high specific surface area[J]. Int J Environ Sci Te, 2021, 18(12): 3871-3882.
[5]Mouni L, Belkhiri L, Bollinger J C, et al. Removal of Methylene Blue from aqueous solutions by adsorption on Kaolin: Kinetic and equilibrium studies[J]. Appl Clay Sci, 2018, 153: 38-45.
[6]Tu Y M, Shao G Y, Zhang W J, et al. The degradation of printing and dyeing wastewater by manganese-based catalysts[J]. Sci Total Environ, 2022, 828.
[7]Liu Z C, Khan T A, Islam M A, et al. A review on the treatment of dyes in printing and dyeing wastewater by plant biomass carbon[J]. Bioresour Technol, 2022, 354.
[8]廖秀珺. 环境工程中印染废水特征分析及处理方法研究[J]. 资源节约与环保, 2021(03): 116-117.
[9]吴敏杰, 黄满红, 陈刚,等. 正渗透膜对印染废水中铬的处理特性[J]. 膜科学与技术, 2019, 39(04): 124-131.
[10]Zheng X, Zhang Z X, Yu D W, et al. Overview of membrane technology applications for industrial wastewater treatment in China to increase water supply[J]. Resour Conserv Recy, 2015, 105: 1-10.
[11]王岩, 王奇梁, 许以农,等. 电渗析用于印染废水膜浓缩液盐回用工艺研究[J]. 膜科学与技术, 2022, 42(03): 122-128.
[12]印霞棐, 李秀芬, 华兆哲,等. 电场控制MBR膜污染技术研究进展[J]. 膜科学与技术, 2020, 40(02): 127-135.
[13]Liu J D, Xiong J X, Tian C, et al. The degradation of methyl orange and membrane fouling behavior in anaerobic baffled membrane bioreactor[J]. Chem Eng J, 2018, 338: 719-725.
[14]Banti D C, Mitrakas M, Samaras P. Membrane Fouling Controlled by Adjustment of Biological Treatment Parameters in Step-Aerating MBR[J]. Membranes, 2021, 11(8).
[15]刘建军, 吕凤, 韩丰泽,等. MBR技术在污水处理中的应用和研究进展[J]. 中南农业科技, 2022, 43(01): 96-100+126.
[16]郭紫阳, 阿如汗, 金铁瑛,等 处理印染废水的HMF与MBR技术对比[J]. 西安工程大学学报, 2022, 36(03): 38-45.
[17]陈春梅, 李秀芬, 刘春彦,等. 印染废水污染膜的组合清洗技术研究[J]. 膜科学与技术, 2015, 35(06): 87-92.
[18]Hou B L, Kuang Y, Han H J, et al. Enhanced performance and hindered membrane fouling for the treatment of coal chemical industry wastewater using a novel membrane electro-bioreactor with intermittent direct current[J]. Bioresour Technol,  2019, 271: 332-339.
[19]Choo K H, Stensel H D. Sequencing batch membrane reactor treatment: Nitrogen removal and membrane fouling evaluation[J]. Water Environ Res, 2000, 72(4): 490-498.
[20]袁野, 罗玲, 陆柳鲜,等. MBR膜污染缓解与处理技术[J]. 应用化工, 2021, 50(10): 2834-2839+2846.
[21]Rahimi Y, Torabian A, Mehrdadi N, et al. Optimizing aeration rates for minimizing membrane fouling and its effect on sludge characteristics in a moving bed membrane bioreactor[J]. J Hazard Mater, 2011, 186(2-3): 1097-1102.
[22]穆思图, 樊慧菊, 韩秉均,等. 中空纤维膜的膜污染过程及数学模型研究进展[J]. 膜科学与技术, 2018, 38(01): 114-121.
[23]Wang B, Zhang Y, Fang Y, et al. Aeration pipe design for free bubbling hydrodynamic optimization of flat sheet MBRs[J]. J Membr Sci, 2022, 646.
[24]钱光磊, 谢陈鑫, 滕厚开,等. 曝气对MBBR联合管式膜MBR处理生活污水的影响及膜污染分析[J]. 环境工程学报, 2022, 16(03): 1019-1027.
[25]Monsalvo V M, Lopez J, Somer M M, et al. Short-term fouling control by cyclic aeration in membrane bioreactors for cosmetic wastewater treatment[J]. Desalin and Water Treat, 2015, 56(13): 3599-3606.
[26]王姚武. 外压浸没式中空纤维膜清洗过程数值模拟分析[D]. 天津工业大学, 2017.
[27]Zondervan E, Roffel B. Evaluation of different cleaning agents used for cleaning ultra filtration membranes fouled by surface water[J]. J Membr Sci, 2007, 304(1-2): 40-49.
[28]周奇哲. 利用多孔介质模型探究SMBR内传质特性的研究[D].东华大学,2018.
[29]王昊文. 中空纤维膜用于污水深度处理时膜污染成因及控制[J]. 化工与医药工程, 2016, 37(03): 48-53.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号