基于缩醛化反应的聚氧化乙烯-聚乙烯醇膜制备及其CO2/N2分离性能
作者:黄佳敏,瞿政,董亮亮,董玉明,张春1,白云翔,朱永法
单位: 1江南大学 合成与生物胶体教育部重点实验室 化学与材料工程学院,无锡214122 2清华大学 化学系 北京100084
关键词: 缩醛化反应;聚氧化乙烯;聚乙烯醇;膜;二氧化碳分离
出版年,卷(期):页码: 2023,43(5):98-105

摘要:
 以低分子量聚氧化乙烯醛(PEO-CHO)为改性剂,通过缩醛化反应制备出新型聚氧化乙烯-聚乙烯醇(PEO-PVA)膜,研究了PEO-CHO添加量对膜理化结构和CO2/N2分离性能的影响。结果表明:PEO-CHO的端醛基可与PVA分子链上的羟基发生缩醛化反应,形成交联和接枝共存结构,从而有效抑制PVA结晶,提高PVA膜的气体渗透系数;当PEO-CHO添加量为90 wt%时,PEO-PVA膜的结晶度仅为1.34%,CO2渗透系数达到15.7 Barrer。此外,PEO-CHO含有的醚氧重复单元可以提高膜的CO2亲和力,PEO-PVA膜的CO2/N2理想选择性保持在56。
 A novel poly(oxyethylene)-poly(vinyl alcohol) (PEO-PVA) membrane was prepared by acetalization using low molecular weight poly(oxyethylene) aldehyde (PEO-CHO) as a modifier, and the effects of PEO-CHO addition amount on the physical and chemical structure and CO2/N2 separation performance of the membrane were studied. The results show that the terminal aldehyde group of PEO-CHO can react with the hydroxyl group on the PVA molecular chains to form a coexisting structure of cross-linking and grafting, which can effectively inhibit PVA crystallization and increase the gas permeability of PVA membranes; The crystallinity of PEO-PVA membrane is only 1.34% when the PEO-CHO addition amount is 90 wt%, and the CO2 permeability reaches 15.7 Barrer. In addition, the ether oxygen repeating unit contained in PEO-CHO can increase the CO2 affinity of the membrane, and the CO2/N2 ideal selectivity of PEO-PVA membrane reached 56.
黄佳敏(1998-),男,江西新余人,硕士生,主要从事气体分离膜的研究,E-mail:1481995845@qq.com

参考文献:
 [1] Dilshad M R, Islam A, Sabir A, et al. Fabrication and performance characterization of novel zinc oxide filled cross-linked PVA/PEG 600 blended membranes for CO2/N2 separation[J]. J Ind Eng Chem, 2017, 55: 65-73.
[2] 黄彦昊, 张超, 曾令勇, 等. 碳达峰、碳中和目标下抗CO2双相混合导体透氧膜研究进展[J]. 材料研究与应用, 2022, 16(02): 183-197.
[3] Ziobrowski Z, Rotkegel A. Comparison of CO2 separation efficiency from flue gases based on commonly used methods and materials[J]. Materials (Basel), 2022, 15(2), 460. https://doi.org/10.3390/ma15020460.
[4] Zhao Y, Tian H, Ouyang Y, et al. Poly(vinyl alcohol) composite membrane with polyamidoamine dendrimers for efficient separation of CO2/H2 and CO2/N2 [J]. J Polym Environ, 2022, 30(10): 4193-4200.
[5] Isanejad M, Mohammadi T. Effect of amine modification on morphology and performance of poly(ether-block-amide)/fumed silica nanocomposite membranes for CO2/CH4 separation[J]. Mater Chem Phys, 2018, 205: 303-314.
[6] Deng L, Kim T, Haegg M. Facilitated transport of CO2 in novel PVAm/PVA blend membrane[J]. J Membr Sci, 2009, 340(1-2): 154-163.
[7] Li S, Wang Z, Zhang C, et al. Interfacially polymerized thin film composite membranes containing ethylene oxide groups for CO2 separation[J]. J Membr Sci, 2013, 436: 121-131.
[8] Mozaffari V, Sadeghi M, Fakhar A, et al. Gas separation properties of polyurethane/poly(ether-block-amide) (PU/PEBA) blend membranes[J]. Sep Purif Technol, 2017, 185: 202-214.
[9] Amedi H R, Aghajani M. Aminosilane-functionalized ZIF-8/PEBA mixed matrix membrane for gas separation application[J]. Microporous Mesoporous Mat, 2017, 247: 124-135.
[10] Sun J, Li Q, Chen G, et al. MOF-801 incorporated peba mixed-matrix composite membranes for CO2 capture[J]. Sep Purif Technol, 2019, 217: 229-239.
[11] Zhao D, Ren J, Li H, et al. Poly(amide-6-b-ethylene oxide)/SAPO-34 mixed matrix membrane for CO2 separation[J]. J Energy Chem, 2014, 23(2): 227-234.
[12] Castro-Munoz R, Fila V, Ahmad M Z. Enhancing the CO2 separation performance of Matrimid 5218 membranes for co2/ch4 binary mixtures[J]. Chem Eng Technol, 2019, 42(3): 645-654.
[13] Karimi S, Firouzfar E, Khoshchehreh M R. Assessment of gas separation properties and CO2 plasticization of polysulfone/polyethylene glycol membranes[J]. J Pet Sci Eng, 2019, 173: 13-19.
[14] Kunalan S, Dey K, Roy P K, et al. Efficient facilitated transport PETIM dendrimer-PVA-PEG/PTFE composite flat-bed membranes for selective removal of CO2[J]. J Membr Sci, 2021, 622. https://doi.org/10.1016/j.memsci.2020.119007.
[15] Mondal A, Barooah M, Mandal B. Effect of single and blended amine carriers on CO2 separation from CO2/N2 mixtures using crosslinked thin-film poly(vinyl alcohol) composite membrane[J]. Int J Greenh Gas Control, 2015, 39: 27-38.
[16] Kim D H, Park M S, Choi Y, et al. Synthesis of PVA-g-POEM graft copolymers and their use in highly permeable thin film composite membranes[J]. Chem Eng J, 2018, 346: 739-747.
[17] Kheirtalab M, Abedini R, Ghorbani M. A novel ternary mixed matrix membrane comprising polyvinyl alcohol (PVA)-modified poly(ether-block-amide)/(Pebax (R) 1657) graphene oxide nanoparticles for CO2 separation[J]. Process Saf Environ Prot, 2020, 144: 208-224.
[18] Barooah M, Mandal B. Synthesis, characterization and CO2 separation performance of novel PVA/PG/ZIF-8 mixed matrix membrane[J]. J Membr Sci, 2019, 572: 198-209.
[19] Shiue A, Yin M J, Tsai M H, et al. Carbon dioxide separation by polyethylene glycol and glutamic acid/polyvinyl alcohol composite membrane[J]. Sustainability, 2021, 13(23): 13367. https://doi.org/10.3390/su132313367.
[20] Zhu L, Swihart M T, Lin H. Tightening polybenzimidazole (PBI) nanostructure via chemical cross-linking for membrane H2/CO2 separation[J]. J Mater Chem A Mater, 2017, 5(37): 19914-19923.
[21] Wypych G. PVAl poly(vinyl alcohol)[Z]: ChemTec Publishing, 2016: 610-614.
[22] Hong X, He J, Zou L, et al. Preparation and characterization of high strength and high modulus PVA fiber via dry-wet spinning with cross-linking of boric acid[J]. J Appl Polym Sci, 2021, 138(47): 51394. https://doi.org/10.1002/app.51394.
[23] Zhao Y X, Tian H F, Ouyang Y G, et al. Poly (vinyl alcohol) composite membrane with polyamidoamine dendrimers for efficient separation of CO2/H2 and CO2/N2[J]. J Polym Environ, 2022, 30(10): 4193-4200.
[24] Mondal A, Mandal B. CO2 separation using thermally stable crosslinked poly(vinyl alcohol) membrane blended with polyvinylpyrrolidone/polyethyleneimine/tetraethylenepentamine[J]. J Membr Sci, 2014, 460: 126-138.
[25] Wong K C, Goh P S, Ismail A F. Enhancing hydrogen gas separation performance of thin film composite membrane through facilely blended polyvinyl alcohol and PEBAX[J]. Int J Hydrogen Energy, 2021, 46(37): 19737-19748.
[26] Dilshad M R, Islam A, Hamidullah U, et al. Effect of alumina on the performance and characterization of cross-linked PVA/PEG 600 blended membranes for CO2/N2 separation[J]. Sep Purif Technol, 2019, 210: 627-635.
[27] Zhu B, He S, Wu Y, et al. One-step synthesis of structurally stable CO2-philic membranes with ultra-high PEO loading for enhanced carbon capture[J]. Engineering, 2022. https://doi.org/10.1016/j.eng.2022.03.016.
[28] Swapna V P, Nambissan P, Thomas S P, et al. Free volume defects and transport properties of mechanically stable polyhedral oligomeric silsesquioxane embedded poly(vinyl alcohol)-poly(ethylene oxide) blend membranes[J]. Polym Int, 2019, 68(7): 1280-1291.
[29] Klepi? M, Setni?ková K, Lan? M, et al. Permeation and sorption properties of CO2-selective blend membranes based on polyvinyl alcohol (PVA) and 1-ethyl-3-methylimidazolium dicyanamide ([EMIM][DCA]) ionic liquid for effective CO2/H2 separation[J]. J Membr Sci, 2020, 597: 1-8.
[30] Abd Rahaman M S, Zhang L, Cheng L, et al. Capturing carbon dioxide from air using a fixed carrier facilitated transport membrane[J]. RSC Adv, 2012, 2(24): 9165-9172.
[31] Helberg R, Dai Z D, Ansaloni L, et al. PVA/PVP blend polymer matrix for hosting carriers in facilitated transport membranes: Synergistic enhancement of CO2 separation performance[J]. Green Energy Environ, 2020, 5(1): 59-68.
[32] Mondal A, Mandal B. Novel CO2-selective cross-linked poly(vinyl alcohol)/polyvinylpyrrolidone blend membrane containing amine carrier for CO2/N2 separation: synthesis, characterization, and gas permeation study[J]. Ind Eng Chem Res, 2014, 53(51): 19736-19746.
[33] Saeed M, Rafiq S, Bergersen L H, et al. Tailoring of water swollen PVA membrane for hosting carriers in CO2 facilitated transport membranes[J]. Sep Purif Technol, 2017, 179: 550-560.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号