聚酰胺薄层复合膜的耐氯改性研究进展
作者:黄河清,辛俊伟,来仁杰,王旭东,吕永涛,王 磊
单位: 西安建筑科技大学环境与市政工程学院,陕西省膜分离重点实验室,陕西省膜分离技术研究院,西安 710055
关键词: 聚酰胺薄层复合膜;活性氯;氯化机理;耐氯改性
出版年,卷(期):页码: 2023,43(5):190-201

摘要:
 易氯化降解制约了聚酰胺薄层复合膜(PA-TFC膜)在脱盐和工业分离等领域的进一步推广和应用。对此,本文归纳了PA-TFC膜受活性氯攻击的氯化机理研究现状,在此基础上,从复合膜结构出发,着重综述了该类型膜耐氯改性的最新研究进展,包括表面改性、PA层改性、支撑层改性和构筑新型耐氯分离层。最后进行总结并作出展望,以期为提升PA-TFC膜的耐氯性能及长期运行稳定性提供参考。
 The susceptibility to chlorination degradation has limited the further promotion and application of polyamide thin film composite membranes (PA-TFC membranes) in desalination and industrial separation fields. In this regard, this paper summarizes the current status of research on the chlorination mechanism of PA-TFC membranes attacked by active chlorine. On this basis, we review the latest research progress on chlorine-resistant modification of PA-TFC membranes from the composite membrane structure, including surface modification, PA layer modification, support layer modification and construction of new chlorine-resistant separation layer. Finally, a summary and an outlook are given to provide references for improving the chlorine resistance and long-term operational stability of PA-TFC membranes.
黄河清(1996-),男,广东湛江人,硕士,研究方向为膜法水处理技术,E-mail:943562744@xauat.edu.cn

参考文献:
 [1]  Sapkota B, Liang W, VahidMohammadi A, et al. High permeability sub-nanometre sieve composite MoS2 membranes[J]. Nat Commun, 2020, 11(1):2747.
[2]  Tortajada C. Contributions of recycled wastewater to clean water and sanitation Sustainable Development Goals[J]. npj Clean Water, 2020, 3(1):22.
[3]  Lu X, Elimelech M. Fabrication of desalination membranes by interfacial polymerization: history, current efforts, and future directions[J]. Chem Soc Rev, 2021, 50(11):6290-6307.
[4]  Dolar D, Košuti? K, Strmecky T. Hybrid processes for treatment of landfill leachate: Coagulation/UF/NF-RO and adsorption/UF/NF-RO[J]. Sep Purif Technol, 2016, 168:39-46.
[5]  Elimelech M, Phillip W A. The Future of Seawater Desalination: Energy, Technology, and the Environment[J]. Science, 2011, 333(6043):712-717.
[6]  Tul Muntha S, Kausar A, Siddiq M. Advances in Polymeric Nanofiltration Membrane: A Review[J]. Polym Plast Technol Eng, 2017, 56(8):841-856.
[7]  Ismail A F, Matsuura T. Progress in transport theory and characterization method of Reverse Osmosis (RO) membrane in past fifty years[J]. Desalination, 2018, 434:2-11.
[8]  Cao S, Deshmukh A, Wang L, et al. Enhancing the Permselectivity of Thin-Film Composite Membranes Interlayered with MoS2 Nanosheets via Precise Thickness Control[J]. Environ Sci Technol, 2022, 56(12):8807-8818.
[9]  Scholz W G, RougÉ P, BÓdalo A, et al. Desalination of Mixed Tannery Effluent with Membrane Bioreactor and Reverse Osmosis Treatment[J]. Environ Sci Technol, 2005, 39(21):8505-8511.
[10] Faria A F, Liu C, Xie M, et al. Thin-film composite forward osmosis membranes functionalized with graphene oxide–silver nanocomposites for biofouling control[J]. J Membr Sci, 2017, 525:146-156.
[11] Misdan N, Ismail A F, Hilal N. Recent advances in the development of (bio)fouling resistant thin film composite membranes for desalination[J]. Desalination, 2016, 380:105-111.
[12] Radu A I, Vrouwenvelder J S, van Loosdrecht M C M, et al. Modeling the effect of biofilm formation on reverse osmosis performance: Flux, feed channel pressure drop and solute passage[J]. J Membr Sci, 2010, 365(1):1-15.
[13] Greenlee L F, Lawler D F, Freeman B D, et al. Reverse osmosis desalination: Water sources, technology, and today's challenges[J]. Water Res, 2009, 43(9):2317-2348.
[14] Jiang S, Li Y, Ladewig B P. A review of reverse osmosis membrane fouling and control strategies[J]. Sci Total Environ, 2017, 595:567-583.
[15] Kavitha J, Rajalakshmi M, Phani A R, et al. Pretreatment processes for seawater reverse osmosis desalination systems—A review[J]. J Water Process Eng, 2019, 32:100926.
[16] Badruzzaman M, Voutchkov N, Weinrich L, et al. Selection of pretreatment technologies for seawater reverse osmosis plants: A review[J]. Desalination, 2019, 449:78-91.
[17] 雷璞. 芳香聚酰胺复合反渗透膜耐氯性及评价方法研究[D]. 天津: 天津工业大学, 2017.
[18] Ang W L, Mohammad A W, Hilal N, et al. A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants[J]. Desalination, 2015, 363:2-18.
[19] Do V T, Tang C Y, Reinhard M, et al. Degradation of Polyamide Nanofiltration and Reverse Osmosis Membranes by Hypochlorite[J]. Environ Sci Technol, 2012, 46(2):852-859.
[20] Avlonitis S, Hanbury W T, Hodgkiess T. Chlorine degradation of aromatic polyamides[J]. Desalination, 1992, 85(3):321-334.
[21] Kang G-D, Gao C-J, Chen W-D, et al. Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane[J]. J Membr Sci, 2007, 300(1):165-171.
[22] Powell J, Luh J, Coronell O. Bulk Chlorine Uptake by Polyamide Active Layers of Thin-Film Composite Membranes upon Exposure to Free Chlorine—Kinetics, Mechanisms, and Modeling[J]. Environ Sci Technol, 2014, 48(5):2741-2749.
[23] Kawaguchi T, Tamura H. Chlorine-resistant membrane for reverse osmosis. I. Correlation between chemical structures and chlorine resistance of polyamides[J]. J Appl Polym Sci, 1984, 29(11):3359-3367.
[24] Patai S. chemistry of the azido group[M]// New York: Interscience Publishers, 1971.
[25] Glater J, Zachariah M. A Mechanistic Study of Halogen Interaction with Polyamide Reverse-Osmosis Membranes[J]. ACS Symp Ser, 1985, 281:345-358.
[26] Do V T, Tang C Y, Reinhard M, et al. Effects of Chlorine Exposure Conditions on Physiochemical Properties and Performance of a Polyamide Membrane—Mechanisms and Implications[J]. Environ Sci Technol, 2012, 46(24):13184-13192.
[27] Valentino L, Renkens T, Maugin T, et al. Changes in Physicochemical and Transport Properties of a Reverse Osmosis Membrane Exposed to Chloraminated Seawater[J]. Environ Sci Technol, 2015, 49(4):2301-2309.
[28] Hardy F E, Robson P. The formation and hydrolysis of substituted N-chloro-N-methylbenzamides in aqueous alkali[J]. J Chem Soc B, 1967, 271(1):1151-1154.
[29] Akdag A, Kocer H B, Worley S D, et al. Why Does Kevlar Decompose, while Nomex Does Not, When Treated with Aqueous Chlorine Solutions?[J]. J Phys Chem B, 2007, 111(20):5581-5586.
[30] Shin D H, Kim N, Lee Y T. Modification to the polyamide TFC RO membranes for improvement of chlorine-resistance[J]. J Membr Sci, 2011, 376(1):302-311.
[31] 刘四华. 聚哌嗪酰胺纳滤膜微结构原位调控及氯化机理研究[D]. 天津: 天津工业大学, 2020.
[32] Soice N P, Greenberg A R, Krantz W B, et al. Studies of oxidative degradation in polyamide RO membrane barrier layers using pendant drop mechanical analysis[J]. J Membr Sci, 2004, 243(1):345-355.
[33] Lee J-H, Chung J Y, Chan E P, et al. Correlating chlorine-induced changes in mechanical properties to performance in polyamide-based thin film composite membranes[J]. J Membr Sci, 2013, 433:72-79.
[34] Lin S, Huang H, Zeng Y, et al. Facile surface modification by aldehydes to enhance chlorine resistance of polyamide thin film composite membranes[J]. J Membr Sci, 2016, 518:40-49.
[35] Tang C Y, Kwon Y-N, Leckie J O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry[J]. Desalination, 2009, 242(1):149-167.
[36] Tang C Y, Kwon Y-N, Leckie J O. Probing the nano- and micro-scales of reverse osmosis membranes—A comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements[J]. J Membr Sci, 2007, 287(1):146-156.
[37] Yan W, Liu L, Dong C, et al. Surface modification of reverse osmosis membrane with tannic acid for improving chlorine resistance[J]. Desalination, 2021, 498:114639.
[38] Choi H, Park J, Tak T, et al. Surface modification of seawater reverse osmosis (SWRO) membrane using methyl methacrylate-hydroxy poly(oxyethylene) methacrylate (MMA-HPOEM) comb-polymer and its performance[J]. Desalination, 2012, 291:1-7.
[39] Gholami S, Rezvani A, Vatanpour V, et al. Improving the chlorine resistance property of polyamide TFC RO membrane by polyethylene glycol diacrylate (PEGDA) coating[J]. Desalination, 2018, 443:245-255.
[40] Yan W, Wang Z, Zhao S, et al. Combining co-solvent-optimized interfacial polymerization and protective coating-controlled chlorination for highly permeable reverse osmosis membranes with high rejection[J]. J Membr Sci, 2019, 572:61-72.
[41] MKD Silva, A Ambrosi, GMD Ramos, et al. Rejuvenating polyamide reverse osmosis membranes by tannic acid treatment[J]. Sep Purif Technol, 2012, 100:1-8.
[42] Xu R, Jiang P, Wei C, et al. Depositing sericin on partially degraded polyamide reverse osmosis membrane for restored salt rejection and simultaneously enhanced resistance to both fouling and chlorine[J]. J Membr Sci, 2018, 545:196-203.
[43] Ni L, Meng J, Li X, et al. Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement[J]. J Membr Sci, 2014, 451:205-215.
[44] Lu P, Liang S, Zhou T, et al. Layered double hydroxide nanoparticle modified forward osmosis membranes via polydopamine immobilization with significantly enhanced chlorine and fouling resistance[J]. Desalination, 2017, 421:99-109.
[45] Sun J, Zhu L-P, Wang Z-H, et al. Improved chlorine resistance of polyamide thin-film composite membranes with a terpolymer coating[J]. Sep Purif Technol, 2016, 157:112-119.
[46] 孙娟, 唐红艳, 周文进, 等. 耐氯聚酰胺复合纳滤膜的制备与性能[J]. 高分子材料科学与工程, 2021, 37(09):157-164+174.
[47] Xue J, Jiao Z, Bi R, et al. Chlorine-resistant polyester thin film composite nanofiltration membranes prepared with β-cyclodextrin[J]. J Membr Sci, 2019, 584:282-289.
[48] Hu Y, Lu K, Yan F, et al. Enhancing the performance of aromatic polyamide reverse osmosis membrane by surface modification via covalent attachment of polyvinyl alcohol (PVA)[J]. J Membr Sci, 2016, 501:209-219.
[49] 汪婧. 抗生物污染及耐氯化反渗透/纳滤膜研制[D]. 天津: 天津大学, 2016.
[50] Asempour F, Akbari S, Kanani-Jazi M H, et al. Chlorine-resistant TFN RO membranes containing modified poly(amidoamine) dendrimer-functionalized halloysite nanotubes[J]. J Membr Sci, 2021, 623:119039.
[51] Huang H, Lin S, Zhang L, et al. Chlorine-Resistant Polyamide Reverse Osmosis Membrane with Monitorable and Regenerative Sacrificial Layers[J]. ACS Appl Mater Interfaces, 2017, 9(11):10214-10223.
[52] Wang Y, Wang Z, Wang J. Lab-scale and pilot-scale fabrication of amine-functional reverse osmosis membrane with improved chlorine resistance and antimicrobial property[J]. J Membr Sci, 2018, 554:221-231.
[53] Zhu X, Xu D, Gan Z, et al. Improving chlorine resistance and separation performance of thin-film composite nanofiltration membranes with in-situ grafted melamine[J]. Desalination, 2020, 489:114539.
[54] Yi Z, Shao F, Yu L, et al. Chemical grafting N-GOQD of polyamide reverse osmosis membrane with improved chlorine resistance, water flux and NaCl rejection[J]. Desalination, 2020, 479:114341.
[55] Wang J, Li S-L, Guan Y, et al. Novel RO membranes fabricated by grafting sulfonamide group: Improving water permeability, fouling resistance and chlorine resistant performance[J]. J Membr Sci, 2022, 641:119919.
[56] Dong A, Wang Y-J, Gao Y, et al. Chemical Insights into Antibacterial N-Halamines[J]. Chemical Reviews, 2017, 117(6):4806-4862.
[57] Wei X, Wang Z, Chen J, et al. A novel method of surface modification on thin-film-composite reverse osmosis membrane by grafting hydantoin derivative[J]. J Membr Sci, 2010, 346(1):152-162.
[58] 韩向磊, 王志, 李旭, 等. 中试规模耐氯抗菌海水反渗透膜制备[J]. 膜科学与技术, 2019, 39(01):93-100.
[59] Liu M, Yu C, Dong Z, et al. Improved separation performance and durability of polyamide reverse osmosis membrane in tertiary treatment of textile effluent through grafting monomethoxy-poly(ethylene glycol) brushes[J]. Sep Purif Technol, 2019, 209:443-451.
[60] Zhang Z, Wang Z, Wang J, et al. Enhancing chlorine resistances and anti-biofouling properties of commercial aromatic polyamide reverse osmosis membranes by grafting 3-allyl-5,5-dimethylhydantoin and N,N′-Methylenebis(acrylamide)[J]. Desalination, 2013, 309:187-196.
[61] 王炎锋, 吕振华, 俞三传. 溶胶-凝胶法改善芳香聚酰胺反渗透膜的耐氯性[J]. 膜科学与技术, 2019, 39(01):28-33.
[62] 刘超. 抗污染耐氯聚酰胺膜的制备与分离性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
[63] Xu J, Wang Z, Yu L, et al. A novel reverse osmosis membrane with regenerable anti-biofouling and chlorine resistant properties[J]. J Membr Sci, 2013, 435:80-91.
[64] Wei X, Wang Z, Zhang Z, et al. Surface modification of commercial aromatic polyamide reverse osmosis membranes by graft polymerization of 3-allyl-5,5-dimethylhydantoin[J]. J Membr Sci, 2010, 351(1):222-233.
[65] Chen Q, Sun F, Zhou J, et al. Chlorine-resistant and internal-concentration-polarization-mitigated polyamide membrane via tethering poly(ethylene glycol) methacrylate[J]. J Appl Polym Sci, 2019, 136(20):47406.
[66] 董倩. 高耐氯性聚酰胺反渗透膜的制备研究[D]. 北京: 北京化工大学, 2020.
[67] Stevens R V, Chapman K T, Weller H N. Convenient and inexpensive procedure for oxidation of secondary alcohols to ketones[J]. J Org Chem, 1980, 45(10):2030-2032.
[68] Liu M, Chen Q, Wang L, et al. Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite RO membrane by surface grafting of polyvinyl alcohol (PVA)[J]. Desalination, 2015, 367:11-20.
[69] Warsinger D M, Chakraborty S, Tow E W, et al. A review of polymeric membranes and processes for potable water reuse[J]. Prog Polym Sci, 2018, 81:209-237.
[70] 柳圳. 利用N,N'-亚甲基双丙烯酰胺制备耐氯RO膜及修复氯化RO膜[D]. 天津: 天津大学, 2019.
[71] Tan Z, Chen S, Peng X, et al. Polyamide membranes with nanoscale Turing structures for water purification[J]. Science, 2018, 360(6388):518-521.
[72] Liu Z F, Zhu G R, Wei Y L, et al. Enhanced flux performance of polyamide composite membranes prepared via interfacial polymerization assisted with ethyl formate[J]. Water Sci Technol, 2017, 76(7):1884-1894.
[73] Tang Y-J, Xu Z-L, Xue S-M, et al. A chlorine-tolerant nanofiltration membrane prepared by the mixed diamine monomers of PIP and BHTTM[J]. J Membr Sci, 2016, 498:374-384.
[74] Xue S-M, Ji C-H, Xu Z-L, et al. Chlorine resistant TFN nanofiltration membrane incorporated with octadecylamine-grafted GO and fluorine-containing monomer[J]. J Membr Sci, 2018, 545:185-195.
[75] Cheng Y, Ying Y, Japip S, et al. Advanced Porous Materials in Mixed Matrix Membranes[J]. Adv Mater, 2018, 30(47):1802401.
[76] Ge M, Wang X, Wu S, et al. Highly antifouling and chlorine resistance polyamide reverse osmosis membranes with g-C3N4 nanosheets as nanofiller[J]. Sep Purif Technol, 2021, 258:117980.
[77] Wang F, Zheng T, Xiong R, et al. CDs@ZIF-8 Modified Thin Film Polyamide Nanocomposite Membrane for Simultaneous Enhancement of Chlorine-Resistance and Disinfection Byproducts Removal in Drinking Water[J]. ACS Appl Mater Interfaces, 2019, 11(36):33033-33042.
[78] Wang X, Li Q, Zhang J, et al. Novel thin-film reverse osmosis membrane with MXene Ti3C2Tx embedded in polyamide to enhance the water flux, anti-fouling and chlorine resistance for water desalination[J]. J Membr Sci, 2020, 603:118036.
[79] 杨碧野. 聚酰胺反渗透复合膜耐氯性能的可再生改性研究[D]. 浙江: 浙江大学, 2020.
[80] Chae H-R, Lee J, Lee C-H, et al. Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance[J]. J Membr Sci, 2015, 483:128-135.
[81] Kim H I, Kim S S. Plasma treatment of polypropylene and polysulfone supports for thin film composite reverse osmosis membrane[J]. J Membr Sci, 2006, 286(1):193-201.
[82] 吴宗策, 蔡志奇, 赵小阳, 等.低污染复合反渗透膜[P].中国专利,101130444.2008-02-27.
[83] Zhan S, Li S, Zhan X, et al. Green lignin-based polyester nanofiltration membranes with ethanol and chlorine resistance[J]. J Appl Polym Sci, 2022, 139(1):51427.
[84] Yao Y, Zhang P, Jiang C, et al. High performance polyester reverse osmosis desalination membrane with chlorine resistance[J]. Nat Sustain, 2021, 4(2):138-146.
[85] Verbeke R, Davenport D M, Stassin T, et al. Chlorine-Resistant Epoxide-Based Membranes for Sustainable Water Desalination[J]. Environ Sci Technol Lett, 2021, 8(9):818-824.
[86] Blanco J F, Nguyen Q T, Schaetzel P. Sulfonation of polysulfones: Suitability of the sulfonated materials for asymmetric membrane preparation[J]. J Appl Polym Sci, 2002, 84(13):2461-2473.
[87] Choudhury S R, Lane O, Kazerooni D, et al. Synthesis and characterization of post-sulfonated poly(arylene ether sulfone) membranes for potential applications in water desalination[J]. Polymer, 2019, 177:250-261.
[88] Xu M, Xue H, Wang Q, et al. Sulfonated poly(arylene ether)s based proton exchange membranes for fuel cells[J]. Int J Hydrog Energy, 2021, 46(62):31727-31753.
[89] Lee C H, McCloskey B D, Cook J, et al. Disulfonated poly(arylene ether sulfone) random copolymer thin film composite membrane fabricated using a benign solvent for reverse osmosis applications[J]. J Membr Sci, 2012, 389:363-371.
[90] Zhu J, Zhang Q, Li S, et al. Fabrication of thin film composite nanofiltration membranes by coating water soluble disulfonated poly(arylene ether sulfone) and in situ crosslinking[J]. Desalination, 2016, 387:25-34.
[91] Park H B, Freeman B D, Zhang Z-B, et al. Highly Chlorine-Tolerant Polymers for Desalination[J]. Angew Chem Int Ed, 2008, 47(32):6019-6024.
[92] 万莹, 毛萃, 周琦, 等. 磺化聚醚砜复合反渗透膜的制备与性能研究[J]. 膜科学与技术, 2014, 34(06):46-50.
[93] Zhao Y, Dai L, Zhang Q, et al. Chlorine-resistant sulfochlorinated and sulfonated polysulfone for reverse osmosis membranes by coating method[J]. J Colloid Interface Sci, 2019, 541:434-443.
[94] 张杨, 严昊, 潘国元, 等. 含羧基侧基的磺化聚芳醚砜复合反渗透膜的制备与性能研究[J]. 膜科学与技术, 2013, 33(06):43-46.
[95] 观姗姗, 张守海, 王晓丽, 等. 耐氯性能优良的磺化杂萘联苯共聚醚砜复合纳滤膜[J]. 膜科学与技术, 2013, 33(04):17-22.
[96] Kim S G, Hyeon D H, Chun J H, et al. Nanocomposite poly(arylene ether sulfone) reverse osmosis membrane containing functional zeolite nanoparticles for seawater desalination[J]. J Membr Sci, 2013, 443:10-18.
[97] Brami M V, Oren Y, Linder C, et al. Nanofiltration properties of asymmetric membranes prepared by phase inversion of sulfonated nitro-polyphenylsulfone[J]. Polymer, 2017, 111:137-147.
[98] Cho K L, Hill A J, Caruso F, et al. Chlorine Resistant Glutaraldehyde Crosslinked Polyelectrolyte Multilayer Membranes for Desalination[J]. Adv Mater, 2015, 27(17):2791-2796.
[99] Lounder S J, Asatekin A. Fouling- and Chlorine-Resistant Nanofiltration Membranes Fabricated from Charged Zwitterionic Amphiphilic Copolymers[J]. ACS Appl Polym Mater, 2022, 4(11):7998-8008.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号