不同构型的支化型聚芳烃阴离子交换膜的制备
作者:王家军,张秋根,朱爱梅,刘庆林
单位: 厦门大学 化学化工学院,福建厦门361000
关键词: 燃料电池;阴离子交换膜;支化结构
出版年,卷(期):页码: 2023,43(6):20-28

摘要:
 通过超酸催化制备了一系列不同构型的支化型聚芳烃阴离子交换膜(AEMs),考察支化单体结构对AEMs性能的影响。结果表明,在相似的IEC (离子交换容量)下,支化结构的AEMs比直链型AEM的离子电导率和耐碱性更优异,柔性支化聚联苯三苯基甲烷螺环阳离子(PBTMPASU)膜的离子电导率优于刚性支化的聚联苯三苯基苯螺环阳离子(PBTBPASU)和聚联苯三蝶烯螺环阳离子(PBTPASU)膜。在80 ℃下,柔性支化PBTMPASU膜的OH−电导率达128.2 mS/cm,在2 mol/LNaOH溶液中进行1080 h的耐碱性测试后,OH−电导率保留了94.1%。此外,基于PBTMPASU膜制备的单电池在1167.0 mA/cm2的电流密度下峰值功率密度高达559.9 mW/cm2。
 A series of branched polyaromatic AEMs with different conformations were prepared by superacid catalysis to investigate the effect of different branched monomer structures on AEMs performance. At similar IECs, the branched structured AEMs exhibited superior ion conductivity and alkali resistance compared to the straight-chain AEMs, the ion conductivity of the flexible branched PBTMPASU membrane had better than that of rigidly branched PBTBPASU and PBTPASU membranes. The OH− conductivity of the flexible branched PBTMPASU membrane reached 128.2 mS/cm at 80 ℃, and after 1080 h of alkali resistance testing in a 2 mol/L NaOH solution, the OH− conductivity retained 94.1%. In addition, the single cell prepared based on PBTMPASU membranes achieved a peak power density of 559.9 mW/cm2 at a current density of 1167.0 mA/cm2.
 
王家军(1995-),男,河南省周口市人,在读硕士研究生,主要从事功能膜材料的制备

参考文献:
 [1] Tao Z W, Wang C Y, Zhao X Y, et al. Progress in high-performance anion exchange membranes based on the design of stable cations for alkaline fuel cells[J]. Adv Mater Technol, 2021, 6(5): 2001220-2001233.
[2] Chen N J, Lee Y M. Anion exchange polyelectrolytes for membranes and ionomers[J]. Prog Polym Sci, 2021, 113: 101345-101385.
[3] You W, Noonan K J T, Coates G W. Alkaline-stable anion exchange membranes: A review of synthetic approaches[J]. Prog Polym Sci, 2020, 100: 101177-101189.
[4] Xue J D, Zhang J F, Liu X, et al. Toward alkaline-stable anion exchange membranes in fuel cells: Cycloaliphatic quaternary ammonium-based anion conductors[J]. Electrochem Energy Rev, 2022, 5(2): 348-400.
[5] Liu L, Chu X M, Liao J Y, et al. Tuning the properties of poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes and their performance in H2/O2 fuel cells[J]. Energy Environ Sci, 2018, 11(2): 435-446.
[6] Xie Y J, Ringuette A, Liu D, et al. Sulfonated branched poly(arylene ether ketone sulfone) proton exchange membranes: Effects of degree of branching and ion exchange capacity[J]. Eur Polym J, 2023, 186: 111837-111846.
[7] Ge Q Q, Liu Y Z, Yang Z J, et al. Hyper-branched anion exchange membranes with high conductivity and chemical stability[J]. Chem Commun, 2016, 52(66): 10141-10143.
[8] Liu D, Xu M Z, Fang M L, et al. Branched comb-shaped poly(arylene ether sulfone)s containing flexible alkyl imidazolium side chains as anion exchange membranes[J]. J Mater Chem A, 2018, 6(23): 10879-10890.
[9] Bai L, Ma L L, Li L, et al. Branched, side-chain grafted polyarylpiperidine anion exchange membranes for fuel cell application[J]. ACS Appl Energy Mater, 2021, 4(7): 6957-6967.
[10] Gao W T, Gao X L, Gou W W, et al. High-performance tetracyclic aromatic anion exchange membranes containing twisted binaphthyl for fuel cells[J]. J Membr Sci, 2022, 655: 120578-120588.
[11] Peng H Q, Li Q H, Hu M X, et al. Alkaline polymer electrolyte fuel cells stably working at 80?°C[J]. J Power Sources, 2018, 390: 165-167.
[12] Chen N J, Kim S P, Hu C, et al. High-performance poly(fluorenyl aryl piperidinium)-based anion exchange membrane fuel cells with realistic hydrogen supply[J]. J Power Sources, 2021, 512: 230474-230481.
[13] Allushi A, Bakvand P M, Jannasch P. Polyfluorenes bearing N,N-dimethylpiperidinium cations on short spacers for durable anion exchange membranes[J]. Macromolecules, 2023, 56(3): 1165-1176.
[14] Pan D, Olsson J S, Jannasch P. Poly(fluorene alkylene) anion exchange membranes with pendant spirocyclic and bis-spirocyclic quaternary ammonium cations[J]. ACS Appl Energy Mater, 2021, 5(1): 981-991.
[15] Liu M, Hu X, Hu B, et al. Soluble poly(aryl piperidinium) with extended aromatic segments as anion exchange membranes for alkaline fuel cells and water electrolysis[J]. J Membr Sci, 2022, 642: 119966-119977.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号