GO/PDA/CNT双层低压膜去除腐殖酸及抗污染性能
作者:吴曜辰,曾嘉,王宇飞,魏娜,刘秋杉,刘国涵,郭瑾
单位: 北京工业大学 城镇污水深度处理与资源化利用技术国家工程实验室,北京 100124
关键词: 碳纳米管;氧化石墨烯;低压膜;腐殖酸;膜污染
出版年,卷(期):页码: 2023,43(6):61-70

摘要:
 腐殖酸(Humic acid,HA)是水体中常见的膜污染物质和消毒副产物前驱体。通过真空抽滤将碳纳米管(Carbon nanotubes,CNTs)和氧化石墨烯(Graphene oxide,GO)负载于基膜表面,结合聚多巴胺(Polydopamine,PDA)的交联黏合功能,制备了GO/PDA/CNT双层低压膜。采用ATR-FTIR分析证实了PDA在GO膜表面的聚合,通过超声破碎验证了双层膜的稳定性。结果表明,GO/PDA/CNT双层膜性能稳定,渗透通量达到1238 L/(m2·h·MPa),高于GO膜的279 L/(m2·h·MPa)。该膜对HA的去除率达到88.5%,均高于GO膜(85.8%)和CNT膜(38.9%)。GO膜和CNT膜的比通量在过滤HA过程中分别降至0.314和0.697,GO/PDA/CNT双层膜的比通量下降幅度最小(0.753)。提高搅拌速率有利于双层膜对HA的去除并进一步缓解膜污染,但搅拌速率过高会加剧膜污染;酸性条件下双层膜对HA去除率最高(94.5%),膜污染相较于中性和碱性条件更为严重。GO/PDA/CNT双层膜的制备,有助于提高膜滤效率和强化腐殖质类有机物的去除,减少消毒副产物的产生。
  Humic acid (HA) is a common membrane fouling substance and precursor of disinfection by-products in water. Carbon nanotubes (CNTs), polydopamine (PDA) and graphene oxide (GO) were used to prepare the double-layer GO/PDA/CNT low-pressure membrane by vacuum filtration. The presence of PDA on the surface of GO membrane was confirmed by ATR-FTIR analysis, and the stability of the double-layer membrane was verified by ultrasonic fragmentation. The permeability of the GO/PDA/CNT membrane was 1238 L/(m2·h·MPa), which was higher than that of the GO membrane with 279 L/(m2·h·MPa). The humic acid removal rate of GO/PDA/CNT membrane was 88.5%, higher than that of GO membrane (85.8%) and CNT membrane (38.9%). After filtration, the specific flux of GO membrane and CNT membrane decreased to 0.314 and 0.697, respectively. The specific flux of GO/PDA/CNT membrane decreased the least (0.753).Increasing the stirring rate improved the removal of HA and reduced membrane fouling. High stirring rate aggravated the membrane fouling. Under acidic condition the HA removal rate of GO/PDA/CNT membrane was the highest (94.5%) and the membrane fouling was the most serious. The preparation of GO/PDA/CNT double-layer membrane will improve membrane filtration efficiency and enhance the removal of humic substances, as well as reduce the generation of disinfection by-products.
吴曜辰(1997-),男,甘肃靖远人,硕士研究生,研究方向为污水深度处理与膜污染控制,E-mail:wu_yc@emails.bjut.edu.cn

参考文献:
 [1] Kieffer R, Mangin D, Puel F, et al. Precipitation of barium sulphate in a hollow fiber membrane contactor, Part I: Investigation of particulate fouling[J]. Chem Eng Sci, 2009, 64(8):1759-1767.
[2] Chen X, Xu Y, Fan M, et al. The stimulatory effect of humic acid on the co-metabolic biodegradation of tetrabromobisphenol A in bioelectrochemical system[J]. J Environ Manage, 2019, 235:350.
[3] Fang J, Yang X, Ma J, et al. Characterization of algal organic matter and formation of DBPs from chlor(am)ination[J]. Water Res, 2010, 44(20):5897-5906.
[4] 董应超, 马丽宁, 朱丽, 等.碳纳米管复合膜的制备及水处理应用研究进展[J]. 膜科学与技术, 2016, 36(6):1-10.
[5] Ajmani G S, Goodwin D, Marsh K, et al. Modification of low-pressure membranes with carbon nanotube layers for fouling control[J]. Water Res, 2012, 46(17):5645-5654.
[6] Bai L, Liang H, Crittenden J, et al. Surface modification of UF membranes with functionalized MWCNTs to control membrane fouling by NOM fractions[J]. J Membr Sci, 2015, 492:400-411.
[7] Chu K H, Huang Y, Yu M, et al. Evaluation of graphene oxide-coated ultrafiltration membranes for humic acid removal at different pH and conductivity conditions[J]. Sep Purif Technol, 2017, 181:139-147.
[8] A Cerón-Vivas, J M Morgan-Sagastume, A Noyola. Intermittent filtration and gas bubbling for fouling reduction in anaerobic membrane bioreactors[J], J Membr Sci, 2012, 423–424:136-142.
[9] Kaya, Gokhan, et al. Analysis of wall shear stress on the outside-in type hollow fiber membrane modules by CFD simulation[J]. Desalination, 2014, 351:109-119.
[10] Bae T H, Tak T M. Interpretation of fouling characteristics of ultrafiltration membranes during the filtration of membrane bioreactor mixed liquor[J]. J Membr Sci, 2005, 264(1/2):151-160.
[11] Ye G, LEE J, Perreault F, et al. Controlled architecture of dual-functional block copolymer brushes on thin-film composite membranes for integrated “defending” and “attacking” strategies against biofouling[J]. ACS Appl Mater Interfaces, 2015, 7(41): 23069-79.
[12] Kwon Y, Leckie J. Hypochlorite degradation of crosslinked polyamide membranes: II. Changes in hydrogen bonding behavior and performance[J]. J Membr Sci, 2006, 282(1/2):456-464.
[13] Liu Z, Wu W, Liu Y, et al. A mussel inspired highly stable graphene oxide membrane for efficient oil-in-water emulsions separation [J]. Sep Purif Technol, 2018, 199:37-46.
[14] Meng H, Mi B. Enabling Graphene oxide nanosheets as water separation membranes[J]. Environ Sci Technol, 2013, 47(8):3715-3723.
[15] Chong J Y, Wang B, Mattevi C, Li K. Dynamic microstructure of graphene oxide membranes and the permeation flux[J]. J Membr Sci, 2018, 549:385-392.
[16] Zhong W, Zhang Y, Zhao L, et al. Highly stable and antifouling graphene oxide membranes prepared by bio-inspired modification for water purification[J]. Chin Chem Lett, 2020, 31(10):2651-2656.
[17] Han Y, Jiang Y Q, et al. High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes[J]. ACS Appl Mater Interfaces, 2015, 7(15):8147-8155.
[18] Alkhouzaam A, Qiblawey H. Novel polysulfone ultrafiltration membranes incorporating polydopamine functionalized graphene oxide with enhanced flux and fouling resistance[J]. J Membr Sci, 2021, 620:118900.
[19] Zheng S, Tu Q, Urban J J, et al. Swelling of Graphene Oxide Membranes in Aqueous Solution: Characterization of Interlayer Spacing and Insight into Water Transport Mechanisms [J]. ACS Nano, 2017, 11(6):6440-50.
[20] 熊馨雅,曾嘉,董梦婵,盖晓莉,王宇飞,郭瑾.多巴胺非共价改性碳纳米管超滤膜的制备及抗污染性能[J].中国环境科学,2022,42(9):4207-4216.
[21] Amirhossein, Khalili-Garakani, et al. Analyze and control fouling in an airlift membrane bioreactor: CFD simulation and experimental studies[J]. Process Biochem, 2011, 46(5):1138-1145.
[22] Vyas H K, Bennett R J, Marshall A D. Cake resistance and force balance mechanism in the crossflow microfiltration of lactalbumin particles [J]. J Membr Sci, 2001, 192(1):165-76.
[23] Taheri A H, Sim L N, Haur C T, et al. The fouling potential of colloidal silica and humic acid and their mixtures[J]. J Membr Sci, 2013, 433:112-120.
[24] 王家宏, 毕丽娟, 马宏瑞, 等. 多壁碳纳米管对水中腐殖酸的吸附行为研究[J].陕西科技大学学报(自然科学版). 2012, 30(04):12-15+21.
[25] Dong M, Guo J, Wang Y, et al. Humic acid non-covalent functionalized multi-walled carbon nanotubes composite membrane and its application for the removal of organic dyes [J]. J Environ Chem Eng, 2022, 10(2):107320.
[26] 李伟娟. 土壤腐殖酸的质子解离平衡研究[J]. 辐射防护通讯, 1999(04):9-13.
[27] Lan T, Wu P, Liu Z, et al. Understanding the effect of pH on the solubility and aggregation extent of humic acid in solution by combining simulation and the experiment[J]. Environ Sci Technol, 2022, 56:917-927.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号