螺环柔性侧链PBI基阴离子交换膜的性能研究
作者:杨照照,王小舟,陈婉婷,崔福军,贺高红,吴雪梅
单位: 1.大连理工大学 精细化工国家重点实验室,膜科学与技术研究开发中心,大连 116024; 2.大连理工大学 盘锦产业技术研究院,盘锦 124221
关键词: 阴离子交换膜;螺环;聚苯并咪唑;碱稳定性;燃料电池
出版年,卷(期):页码: 2023,43(6):71-78

摘要:
 提出具有高碱稳定性的螺环柔性侧链PBI基阴离子交换膜结构(ASD-PBI-x)概念。以二溴丁烷和1,3-二(4-哌啶基)丙烷为原料制备了螺环阳离子基团,以聚苯并咪唑(PBI)为基材,接枝螺环阳离子柔性侧链,主链和侧链结构均具有强碱稳定性,双醚柔性间隔基团提高了刚性螺环结构的成膜性,并促进了膜内良好的微相分离形貌形成。结果表明,该系列膜具有良好的性能,其中接枝度为90%的ASD-PBI-90膜在80℃时的电导率为83.2 mS/cm,在1 mol/L KOH、80℃浸泡1080 h后膜的OH-电导率保持率达到94.2%。将该膜用于氢氧燃料电池,在60℃时单电池的峰值功率密度为367 mW/cm2。ASD-PBI膜具有优异的碱稳定性、良好的电导率和电池性能,有望应用于氢氧燃料电池领域。
 In this work, a N-spirocyclic flexible side chain type PBI anion exchange membrane is proposed, in which both main chain and side chain structures have strong alkali stability. The N-spirocyclic cationic group was prepared by 1,4-dibromobutane and 1,3-bis (4-piperidine) propane, and polybenzimidazole (PBI) was used as substrate to graft the flexible side chain of N-spirocyclic cationic groups. The flexible diether-oxygen spacer in side chain promotes the membrane-forming ability of the highly rigid N-spirocyclic group, as well as the good microphase separation morphology in the membrane. The ASD-PBI-90 membrane shows conductivity of about 83.2 mS/cm, as well as excellent alkaline stability with around 94.2% retention in conductivity after soaking in 1 mol/L KOH solution at 80℃ for 1080 h. H2/O2 fuel cell performance assembled with ASD-PBI-90 membrane exhibits a maximum peak power density of 367 mW/cm2 at 60℃. ASD-PBI membranes show excellent alkali stability, good conductivity and fuel cell performance, which is promising to H2/O2 fuel cell applications.
杨照照(1997-),女,山西运城人,硕士,从事阴离子交换膜研究,E-mail: yzz19980802@163.com.

参考文献:
 [1] Gu S, Cai R, Luo T, et al. A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells[J]. Angew Chem Int Ed, 2009, 48(35): 6499-6502.
[2] Yang Z, Zhang M, Zhao Z, et al. Construction of quaternized polysulfone/polyquaternium-10 anion exchange membrane with semi-interpenetrating network for alkaline fuel cell[J]. Macromol Mater Eng, 2022, 307(1): 2100539.
[3] Akiyama R, Yokota N, Miyatake K. Chemically stable, highly anion conductive polymers composed of quinquephenylene and pendant ammonium groups[J]. Macromolecules, 2019, 52(5): 2131-2138.
[4] Karimi M B, Mohammadi F, Hooshyari K. Recent approaches to improve Nafion performance for fuel cell applications: A review[J]. Int J Hydrogen Energ, 2019, 44(54): 28919-28938.
[5] Li S, Zhang H, Wang K, et al. Anion conductive piperidinium based poly (ether sulfone): Synthesis, properties and cell performance[J]. J Membr Sci, 2020, 594: 117471.
[6] Hren M, Bo?i? M, Fakin D, et al. Alkaline membrane fuel cells: anion exchange membranes and fuels[J]. Sustainable Energy Fuels, 2021, 5(3): 604-637.
[7] Arges C G, Ramani V. Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes[J]. Proceed Nat Academy Sci U S A, 2013, 110(7): 2490-2495.
[8] Liu J, Gao L, Di M, et al. Low boiling point solvent-soluble, highly conductive and stable poly (ether phenylene piperidinium) anion exchange membrane[J]. J Membr Sci, 2022, 644: 120185.
[9] Olsson J S, Pham T H, Jannasch P. Tuning poly(arylene piperidinium) anion-exchange membranes by copolymerization, partial quaternization and crosslinking[J]. J Membr Sci, 2019, 578: 183-195.
[10] Wang J, Zhao Y, Setzler B P, et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells[J]. Nat Energy, 2019, 4(5): 392-398.
[11] Kang Y, Zou J, Sun Z, et al. Polybenzimidazole containing ether units as electrolyte for high temperature proton exchange membrane fuel cells[J]. Int J Hydrogen Energ, 2013, 38(15): 6494-6502.
[12] Wang X, Chen W, Li T, et al. Ultra-thin quaternized polybenzimidazole anion exchange membranes with throughout OH− conducive highway networks for high-performance fuel cells[J]. J Mater Chem A, 2021, 9(12): 7522-7530.
[13] Wang X, Chen W, Yan X, et al. Pre-removal of polybenzimidazole anion to improve flexibility of grafted quaternized side chains for high performance anion exchange membranes[J]. J Power Sources, 2020, 451: 227813.
[14] Li S, Zhu X, Liu D, et al. A highly durable long side-chain polybenzimidazole anion exchange membrane for AEMFC[J]. J Membr Sci, 2018, 546: 15-21.
[15] Wang Y, Qiao X, Liu M, et al. The effect of –NH− on quaternized polybenzimidazole anion exchange membranes for alkaline fuel cells[J]. J Membr Sci, 2021, 626: 119178.
[16] Jheng L-C, Hsu S L-C, Lin B-Y, et al. Quaternized polybenzimidazoles with imidazolium cation moieties for anion exchange membrane fuel cells[J]. J Membr Sci, 2014, 460: 160-170.
[17] Wang X, Li J, Chen W, et al. Polybenzimidazole ultrathin anion exchange membrane with comb-shape amphiphilic microphase networks for a high-performance fuel cell[J]. ACS Appl Mater Interfaces, 2021, 13(42): 49840-49849.
[18] Zhang F, Li T, Chen W, et al. Highly stable electron-withdrawing C=O link-free backbone with branched cationic side chain as anion exchange membrane[J]. J Membr Sci, 2021, 624: 119052.
[19] Gong X, Yan X, Li T, et al. Design of pendent imidazolium side chain with flexible ether-containing spacer for alkaline anion exchange membrane[J]. J Membr Sci, 2017, 523: 216-224.
[20] Hugar K M, Kostalik H a T, Coates G W. Imidazolium cations with exceptional alkaline stability: A systematic study of structure-stability relationships[J]. J Am Chem Soc, 2015, 137(27): 8730-8737.
[21] Kim Y, Wang Y, France-Lanord A, et al. Ionic highways from covalent assembly in highly conducting and stable anion exchange membrane fuel cells[J]. J Am Chem Soc, 2019, 141(45): 18152-18159.
[22] Yuan Y, Zhang T, Wang Z. Preparation of an anion exchange membrane by pyridine-functionalized polyether ether ketone to improve alkali resistance stability for an alkali fuel cell[J]. Energy Fuels, 2021, 35(4): 3360-3367.
[23] Olsson J S, Pham T H, Jannasch P. Poly(N,N-diallylazacycloalkane)s for anion-exchange membranes functionalized with N-spirocyclic quaternary ammonium cations[J]. Macromolecules, 2017, 50(7): 2784-2793.
[24] Olsson J S, Pham T H, Jannasch P. Functionalizing polystyrene with N-alicyclic piperidine-based cations via Friedel-crafts alkylation for highly alkali-stable anion-exchange membranes[J]. Macromolecules, 2020, 53(12): 4722-4732.
[25] Zhang Y, Chen W, Li T, et al. A rod-coil grafts strategy for N-spirocyclic functionalized anion exchange membranes with high fuel cell power density[J]. J Power Sources, 2021, 490: 229544.
[26] Dang H-S, Jannasch P. High-performing hydroxide exchange membranes with flexible tetra-piperidinium side chains linked by alkyl spacers[J]. ACS Appl Energy Mater, 2018, 1(5): 2222-2231.
[27] Ren R, Zhang S, Miller H A, et al. Facile preparation of an ether-free anion exchange membrane with pendant cyclic quaternary ammonium groups[J]. ACS Appl Energy Mater, 2019, 2(7): 4576-4581.
[28] Marino M G, Kreuer K D. Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids[J]. Chemsuschem, 2015, 8(3): 513-523.
[29] Zhang Y, Chen W, Yan X, et al. Ether spaced N-spirocyclic quaternary ammonium functionalized crosslinked polysulfone for high alkaline stable anion exchange membranes[J]. J Membr Sci, 2020, 598: 117650.
[30] Zhu L, Peng X, Shang S L, et al. High performance anion exchange membrane fuel cells enabled by fluoropoly(olefin) membranes[J]. Adv Funct Mater, 2019, 29(26): 1902059.
[31] Wang X R, Ma Y, Gao J, et al. Review on water management methods for proton exchange membrane fuel cells[J]. Int J Hydrogen Energ, 2021, 46(22): 12206-12229.
[32] Daud W R W, Rosli R E, Majlan E H, et al. PEM fuel cell system control: A review[J]. Renewable Energy, 2017, 113: 620-638.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号