面向水系有机液流电池的离子交换膜
作者:彭康,左培培,杨正金,徐铜文
单位: 中国科学技术大学 应用化学系,合肥 230026
关键词: 离子交换膜;水系有机液流电池;微相分离膜;自具微孔膜;微孔框架膜
出版年,卷(期):页码: 2023,43(6):98-111

摘要:
 离子交换膜是水系有机液流电池的核心部件,其对离子的快速、选择性传导是水系有机液流电池实现高能量效率、低容量衰减速率的关键。而离子的传导过程与膜内的微观结构密切相关,因此本文结合膜内离子传导通道的构筑策略分析,综述微相分离膜、自具微孔膜、微孔框架膜在水系有机液流电池中的发展;并围绕离子交换膜的离子传导性、电活性分子阻隔性、稳定性和兼容性等重要特性,探讨离子交换膜设计及优化方向,以期为水系有机液流电池专用离子交换膜的创制提供参考。
 Ion-exchange membranes are a crucial component of aqueous organic redox flow batteries (AORFBs), and their fast and selective ion conduction is the key to achieve high energy efficiency and low capacity fade rate of AORFBs. As the ion conduction process is closely related to the microstructure in membranes, we review herein the development of membranes in AORFBs, including membranes with microphase-separated structures, membranes from polymers of intrinsic microporosity, and microporous framework membranes, combining with the analysis of the construction strategies of ion channels. Moreover, the design and optimization direction of ion-exchange membranes are discussed based on their critical features, such as ion conductivity, permeability of redox-active molecules, stability, and compatibility, in order to present constructive suggestions and opinions for the creation of appropriate membranes for AORFBs.
彭康(1993-),男,博士,研究方向为水系有机液流电池,E-mail:pengkang@ustc.edu.cn

参考文献:
 [1] Haegel N M, Atwater H, Barnes T, et al. Terawatt-scale photovoltaics: Transform global energy[J]. Science, 2019, 364(6443): 836-838.
[2] Rinne E, Holttinen H, Kiviluoma J, et al. Effects of turbine technology and land use on wind power resource potential[J]. Nat Energy, 2018, 3(6): 494-500.
[3] Winsberg J, Hagemann T, Janoschka T, et al. Redox-flow batteries: From metals to organic redox-active materials[J]. Angew Chem Int Ed, 2017, 56(3): 686-711.
[4] Luo J, Hu B, Hu M, et al. Status and prospects of organic redox flow batteries toward sustainable energy storage[J]. ACS Energy Lett, 2019, 4(9): 2220-2240.
[5] Chen Q, Lv Y, Yuan Z, et al. Organic electrolytes for pH-Neutral aqueous organic redox flow batteries[J]. Adv Funct Mater, 2022, 32(9): 2108777.
[6] Tsehaye M T, Mourouga G, Schmidt T J, et al. Towards optimized membranes for aqueous organic redox flow batteries: Correlation between membrane properties and cell performance[J]. Renew Sust Energ Rev, 2023, 173: 113059.
[7] Huskinson B, Marshak M P, Suh C, et al. A metal-free organic-inorganic aqueous flow battery[J]. Nature, 2014, 505(7482): 195-198.
[8] Liu T, Wei X, Nie Z, et al. A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte[J]. Adv Energy Mater, 2016, 6(3): 1501449.
[9] Janoschka T, Martin N, Hager M D, et al. An aqueous redox-flow battery with high capacity and power: The TEMPTMA/MV system[J]. Angew Chem Int Ed, 2016, 55(46): 14427-14430.
[10] Liu Y, Goulet M-A, Tong L, et al. A long-lifetime all-organic aqueous flow battery utilizing TMAP-TEMPO radical[J]. Chem, 2019, 5(7): 1861-1870.
[11] DeBruler C, Hu B, Moss J, et al. Designer two-electron storage viologen anolyte materials for neutral aqueous organic redox flow batteries[J]. Chem, 2017, 3(6): 961-978.
[12] DeBruler C, Hu B, Moss J, et al. A sulfonate-functionalized viologen enabling neutral cation exchange, aqueous organic redox flow batteries toward renewable energy storage[J]. ACS Energy Lett, 2018, 3(3): 663-668.
[13] Beh E S, De Porcellinis D, Gracia R L, et al. A neutral ph aqueous organic-organometallic redox flow battery with extremely high capacity retention[J]. ACS Energy Lett, 2017, 2(3): 639-644.
[14] Hu B, DeBruler C, Rhodes Z, et al. Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage[J]. J Am Chem Soc, 2017, 139(3): 1207-1214.
[15] Li Y, Xu Z, Liu Y, et al. Functioning water-insoluble ferrocenes for aqueous organic flow battery via host-guest inclusion[J]. ChemSusChem, 2021, 14(2): 745-752.
[16] Yang Z, Tong L, Tabor D P, et al. Alkaline benzoquinone aqueous flow battery for large-scale storage of electrical energy[J]. Adv Energy Mater, 2018, 8(8): 1702056.
[17] Lin K, Chen Q, Gerhardt M R, et al. Alkaline quinone flow battery[J]. Science, 2015, 349(6255): 1529-1532.
[18] Wang C, Li X, Yu B, et al. Molecular design of fused-ring phenazine derivatives for long-cycling alkaline redox flow batteries[J]. ACS Energy Lett, 2020, 5(2): 411-417.
[19] Xu J, Pang S, Wang X, et al. Ultrastable aqueous phenazine flow batteries with high capacity operated at elevated temperatures[J]. Joule, 2021, 5(9): 2437-2449.
[20] Li L, Su Y, Ji Y, et al. A long-lived water-soluble phenazine radical cation[J]. J Am Chem Soc, 2023, 145(10): 5778-5785.
[21] Feng R, Zhang X, Murugesan V, et al. Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries[J]. Science, 2021, 372(6544): 836-840.
[22] Hu B, Seefeldt C, DeBruler C, et al. Boosting the energy efficiency and power performance of neutral aqueous organic redox flow batteries[J]. J Mater Chem A, 2017, 5(42): 22137-22145.
[23] Zuo P, Xu Z, Zhu Q, et al. Ion exchange membranes: Constructing and tuning ion transport channels[J]. Adv Funct Mater, 2022, 32(52): 2207366.
[24] Xiong P, Zhang L, Chen Y, et al. A chemistry and microstructure perspective on ion-conducting membranes for redox flow batteries[J]. Angew Chem Int Ed, 2021, 60(47): 24770-24798.
[25] Zuo P, Ye C, Jiao Z, et al. Near-frictionless ion transport within triazine framework membranes[J]. Nature, 2023, 617(7960): 299-305.
[26] Kwabi D G, Lin K, Ji Y, et al. Alkaline quinone flow battery with long lifetime at pH 12[J]. Joule, 2018, 2(9): 1894-1906.
[27] Luo J, Hu B, Debruler C, et al. Unprecedented capacity and stability of ammonium ferrocyanide catholyte in pH neutral aqueous redox flow batteries[J]. Joule, 2019, 3(1): 149-163.
[28] Small L J, Pratt H D, Anderson T M. Crossover in membranes for aqueous soluble organic redox flow batteries[J]. J Electrochem Soc, 2019, 166(12): A2536.
[29] Tang G, Liu Y, Li Y, et al. Designing robust two-electron storage extended bipyridinium anolytes for pH-neutral aqueous organic redox flow batteries[J]. JACS Au, 2022, 2(5): 1214-1222.
[30] Peng K, Sun P, Yang Z, et al. A pegylated viologen for crossover-free and high-capacity pH-neutral aqueous organic redox flow batteries[J]. Batteries & Supercaps, 2023, 6(2): e202200426.
[31] Schmidt-Rohr K, Chen Q. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes[J]. Nat Mater, 2008, 7(1): 75-83.
[32] Li Y, Liu Y, Xu Z, et al. Poly(phenylene oxide)-based ion-exchange membranes for aqueous organic redox flow battery[J]. Ind Eng Chem Res, 2019, 58(25): 10707-10712.
[33] Robb B H, George T Y, Davis C M, et al. Sulfonated diels-alder poly(phenylene) membrane for efficient ion-selective transport in aqueous metalorganic and organic redox flow batteries[J]. J Electrochem Soc, 2023, 170(3): 030515.
[34] Xiao Y, Hu L, Gao L, et al. Enabling high anion-selective conductivity in membrane for high-performance neutral organic based aqueous redox flow battery by microstructure design[J]. Chem Eng J, 2022, 432: 134268.
[35] Li Z, Lu Y-C. Polysulfide-based redox flow batteries with long life and low levelized cost enabled by charge-reinforced ion-selective membranes[J]. Nat Energy, 2021, 6(5): 517-528.
[36] Zhu Q, Li H, Wu W, et al. Solution-processable amorphous microporous polymers for membrane applications[J]. Prog Polym Sci, 2023, 137: 101636.
[37] Yang Z, Guo R, Malpass-Evans R, et al. Highly conductive anion-exchange membranes from microporous tröger's base polymers[J]. Angew Chem Int Ed, 2016, 55(38): 11499-11502.
[38] Baran M J, Braten M N, Sahu S, et al. Design rules for membranes from polymers of intrinsic microporosity for crossover-free aqueous electrochemical devices[J]. Joule, 2019, 3(12): 2968-2985.
[39] Tan R, Wang A, Malpass-Evans R, et al. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage[J]. Nat Mater, 2020, 19(2): 195-202.
[40] Zuo P, Li Y, Wang A, et al. Sulfonated Microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage[J]. Angew Chem Int Ed, 2020, 59(24): 9564-9573.
[41] Ye C, Tan R, Wang A, et al. Long-life aqueous organic redox flow batteries enabled by amidoxime-functionalized ion-selective polymer membranes[J]. Angew Chem Int Ed, 2022, 61(38): e202207580.
[42] Li H, Zhu Q, Dong Y, et al. Ultra-microporous anion conductive membranes for crossover-free pH-neutral aqueous organic flow batteries[J]. J Membr Sci, 2023, 668: 121195.
[43] Ye C, Wang A, Breakwell C, et al. Development of efficient aqueous organic redox flow batteries using ion-sieving sulfonated polymer membranes[J]. Nat Commun, 2022, 13(1): 3184.
[44] Wang A, Tan R, Liu D, et al. Ion-selective microporous polymer membranes with hydrogen-bond and salt-bridge networks for aqueous organic redox flow batteries[J]. Adv Mater, 2023, 35(12): 2210098.
[45] Song W, Peng K, Xu W, et al. Upscaled production of an ultramicroporous anion-exchange membrane enables long-term operation in electrochemical energy devices[J]. Nat Commun, 2023, 14(1): 2732.
[46] Chen N, Jin Y, Liu H, et al. Insight into the alkaline stability of N-heterocyclic ammonium groups for anion-exchange polyelectrolytes[J]. Angew Chem Int Ed, 2021, 60(35): 19272-19280.
[47] Wang H H, Hu C, Park J H, et al. Reinforced poly(fluorenyl-co-terphenyl piperidinium) anion exchange membranes for fuel cells[J]. J Membr Sci, 2022, 644: 120160.
[48] Hu C, Park J H, Kim H M, et al. Robust and durable poly(aryl-co-aryl piperidinium) reinforced membranes for alkaline membrane fuel cells[J]. J Mater Chem A, 2022, 10(12): 6587-6595.
[49] Gao M, Salla M, Zhang F, et al. Membrane fouling in aqueous redox flow batteries[J]. J Power Sources, 2022, 527: 231180.
[50] Peng K, Li Y, Tang G, et al. Solvation regulation to mitigate the decomposition of 2,6-dihydroxyanthraquinone in aqueous organic redox flow batteries[J]. Energy Environ Sci, 2023, 16(2): 430-437.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号