阴离子交换膜离子传导率与耐碱稳定性研究进展
作者:尹卓毓,吴洪,姜忠义
单位: 天津大学 化工学院,天津 300350
关键词: 碱性膜电解水制氢;燃料电池;阴离子交换膜;离子传导率;耐碱稳定性
出版年,卷(期):页码: 2023,43(6):112-127

摘要:
 碱性膜电解水制氢和燃料电池技术是氢能产业链上的重要产氢和用氢技术。作为碱性膜电解槽及燃料电池的核心部件,阴离子交换膜承担着传递氢氧根离子、阻隔气体渗透、分隔正负两极的重要作用,决定着电化学过程效率和性能。现有阴离子交换膜的氢氧根传导率偏低和耐碱稳定性不高的问题严重制约着产氢和氢能转化效率。本文综述了近年来面向碱性膜电解水制氢和燃料电池应用的阴离子交换膜的发展动态,特别是在强化离子传导率、提高耐碱稳定性方面的方法和进展,以及膜材料化学组成和结构对膜性能的影响。
 Alkaline membrane water electrolysis and fuel cell technology are important hydrogen production and utilization technologies in the hydrogen energy industry chain. As the core component of alkaline membrane electrolyzer and fuel cell, the anion exchange membrane (AEM) plays an important role in transferring hydroxide ions, blocking gas permeation, and separating positive and negative electrodes, which determines the efficiency and performance of the electrochemical process. The low hydroxide conductivity and poor alkaline stability of existing AEM seriously limit the efficiency of hydrogen production and conversion. This paper reviews recent developments in AEM for alkaline membrane water electrolysis and fuel cell, in particular the methods and progress in enhancing ion conductivity and improving alkaline stability, and the influence of membrane material chemical composition and structure on membrane performance.
尹卓毓(1996-),男,河南禹州人,硕士研究生,研究方向为离子交换膜,E-mail:zhuoyuyin@tju.edu.cn

参考文献:
 [1] Abbasi R, Setzler B P, Lin S S, et al. A roadmap to low-cost hydrogen with hydroxide exchange membrane electrolyzers [J]. Adv Mater, 2019, 31(31): 1805876.
[2] Vincent I, Bessarabov D. Low cost hydrogen production by anion exchange membrane electrolysis: A review [J]. Renew Sust Energ Rev, 2018, 81(2): 1690-1704.
[3] Xiao L, Zhang S, Pan J, et al. First implementation of alkaline polymer electrolyte water electrolysis working only with pure water [J]. Energ Environ Sci, 2012, 5(7): 7869-7871.
[4] Li D G, Motz A R, Bae C, et al. Durability of anion exchange membrane water electrolyzers [J]. Energ Environ Sci, 2021, 14(6): 3393-3419.
[5] Yang Y X, Li P, Zheng X B, et al. Anion-exchange membrane water electrolyzers and fuel cells [J]. Chem Soc Rev, 2022, 51(23): 9620-9693.
[6] Du N Y, Roy C, Peach R, et al. Anion-exchange membrane water electrolyzers [J]. Chem Rev, 2022,122(13):11830-11895.
[7] Yang Y, Peltier C R, Zeng R, et al. Electrocatalysis in alkaline media and alkaline membrane-based energy technologies [J]. Chem Rev, 2022, 122(6): 6117-6321.
[8] Zhang J F, Zhu W K, Huang T, et al. Recent insights on catalyst layers for anion exchange membrane fuel cells [J]. Adv Sci, 2021, 8(15): 2100284.
[9] Ramaswamy N, Mukerjee S. Alkaline anion-exchange membrane fuel cells: Challenges in electrocatalysis and interfacial charge transfer [J]. Chem Rev, 2019, 119(23): 11945-11979.
[10] Cao L, He X, Jiang Z, et al. Channel-facilitated molecule and ion transport across polymer composite membranes [J]. Chem Soc Rev, 2017, 46(22): 6725-6745.
[11] Gottesfeld S, Dekel D R, Page M, et al. Anion exchange membrane fuel cells: Current status and remaining challenges [J]. J Power Sources, 2018, 375: 170-184.
[12] Varcoe J R, Atanassov P, Dekel D R, et al. Anion-exchange membranes in electrochemical energy systems [J]. Energ Environ Sci, 2014, 7(10): 3135-3191.
[13] Agmon N. Mechanism of hydroxide mobility [J]. Chem Phys Lett, 2000, 319(3-4): 247-252.
[14] Zheng Y W, Omasta T J, Peng X, et al. Quantifying and elucidating the effect of CO2 on the thermodynamics, kinetics and charge transport of AEMFCs [J]. Energ Environ Sci, 2019, 12(9): 2806-2819.
[15] Mauritz K A, Moore R B. State of understanding of Nafion [J]. Chem Rev, 2004, 104(10): 4535-4585.
[16] Shin D W, Guiver M D, Lee Y M. Hydrocarbon-based polymer electrolyte membranes: Importance of morphology on ion transport and membrane stability [J]. Chem Rev, 2017, 117(6): 4759-4805.
[17] Salerno H L S, Beyer F L, Elabd Y A. Anion exchange membranes derived from nafion precursor for the alkaline fuel cell [J]. J Polym Sci Pol Phys, 2012, 50(8): 552-562.
[18] Chen C, Pan J, Han J J, et al. Varying the microphase separation patterns of alkaline polymer electrolytes [J]. J Mater Chem A, 2016, 4(11): 4071-4081.
[19] Sun L, Guo J S, Zhou J, et al. Novel nanostructured high-performance anion exchange ionomers for anion exchange membrane fuel cells [J]. J Power Sources, 2012, 202: 70-77.
[20] Li X F, Zhang B, Guo J, et al. High-strength, ultra-thin anion exchange membranes with a branched structure toward alkaline membrane fuel cells [J]. J Mater Chem A, 2023, 11(20): 10738-10747.
[21] Hu M, Ding L, Shehzad M A, et al. Comb-shaped anion exchange membrane with densely grafted short chains or loosely grafted long chains? [J]. J Membr Sci, 2019, 585: 150-156.
[22] Xu F, Su Y, Lin B C. Progress of alkaline anion exchange membranes for fuel cells: The effects of micro-phase separation [J]. Front Mater, 2020, 7: 4.
[23] Wang X Y, Shi B B, Yang H, et al. Assembling covalent organic framework membranes with superior ion exchange capacity [J]. Nat Commun, 2022, 13(1): 1020.
[24] Lin B C, Xu F, Chu F Q, et al. Bis-imidazolium based poly(phenylene oxide) anion exchange membranes for fuel cells: The effect of cross-linking [J]. J Mater Chem A, 2019, 7(21): 13275-13283.
[25] Lin C X, Wang J X, Shen G H, et al. Construction of crosslinked polybenz imidazole-based anion exchange membranes with ether-bond-free backbone [J]. J Membr Sci, 2019, 590: 117303.
[26] Chen N J, Lu C R, Li Y X, et al. Tunable multi-cations-crosslinked poly(arylene piperidinium)-based alkaline membranes with high ion conductivity and durability [J]. J Membr Sci, 2019, 588: 117120.
[27] Qiu M, Zhang B, Wu H, et al. Preparation of anion exchange membrane with enhanced conductivity and alkaline stability by incorporating ionic liquid modified carbon nanotubes [J]. J Membr Sci, 2019, 573: 1-10.
[28] Simari C, Lufrano E, Rehman M H U, et al. Effect of LDH platelets on the transport properties and carbonation of anion exchange membranes [J]. Electrochim Acta, 2022, 403: 139713.
[29] Chen J, Guan M M, Li K, et al. Highly hydroxide-conductive anion exchange membrane with PIL@MOF-assisted ion nanochannels [J]. J Ind Eng Chem, 2021, 94: 465-471.
[30] Zhang N, Li P, Li X, et al. Anion exchange composite membrane based on ionic liquid-grafted covalent organic framework for fuel cells [J]. Int J Hydrogen Energ, 2022, 47(68): 29481-29494.
[31] Shi B, Wu H, Shen J, et al. Control of edge/in-plane interactions toward robust, highly proton conductive graphene oxide membranes [J]. ACS Nano, 2019, 13(9): 10366-10375.
[32] Bayer T, Cunning B V, Selyanchyn R, et al. Alkaline anion exchange membranes based on KOH-treated multilayer graphene oxide [J]. J Membr Sci, 2016, 508: 51-61.
[33] Sun P Z, Chen F S, Zhou W, et al. Superionic conduction along ordered hydroxyl networks in molecular-thin nanosheets [J]. Mater Horiz, 2019, 6(10): 2087-2093.
[34] Sun P, Ma R, Bai X, et al. Single-layer nanosheets with exceptionally high and anisotropic hydroxyl ion conductivity [J]. Sci Adv, 2017, 3(4): e1602629.
[35] He X, Cao L, He G, et al. A highly conductive and robust anion conductor obtained via synergistic manipulation in intra- and inter-laminate of layered double hydroxide nanosheets [J]. J Mater Chem A, 2018, 6(22): 10277-10285.
[36] Ishiwari F, Sato T, Yamazaki H, et al. An anion-conductive microporous membrane composed of a rigid ladder polymer with a spirobiindane backbone [J]. J Mater Chem A, 2016, 4(45): 17655-17659.
[37] Hu C, Zhang Q G, Lin C X, et al. Multi-cation crosslinked anion exchange membranes from microporous Troger's base copolymers [J]. J Mater Chem A, 2018, 6(27): 13302-13311.
[38] Huang T, Zhang J F, Pei Y B, et al. Mechanically robust microporous anion exchange membranes with efficient anion conduction for fuel cells [J]. Chem Eng J, 2021, 418: 129311.
[39] Wang H J, Wang M D, Liang X, et al. Organic molecular sieve membranes for chemical separations [J]. Chem Soc Rev, 2021, 50(9): 5468-5516.
[40] He X Y, Yang Y, Wu H, et al. De Novo design of covalent organic framework membranes toward ultrafast anion transport [J]. Adv Mater, 2020, 32(36): 2001284.
[41] Choe Y K, Fujimoto C, Lee K S, et al. Alkaline stability of benzyl trimethyl ammonium functionalized polyaromatics: a computational and experimental study [J]. Chem Mater, 2014, 26(19): 5675-5682.
[42] Arges C G, Zhang L. Anion exchange membranes' evolution toward high hydroxide ion conductivity and alkaline resiliency [J]. Acs Appl Energ Mater, 2018, 1(7): 2991-3012.
[43] Noh S, Jeon J Y, Adhikari S, et al. Molecular engineering of hydroxide conducting polymers for anion exchange membranes in electrochemical energy conversion technology [J]. Acc Chem Res, 2019, 52(9): 2745-2755.
[44] Wang J H, Zhao Y, Setzler B P, et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells [J]. Nat Energy, 2019, 4(5): 392-398.
[45] Chen N J, Wang H H, Kim S P, et al. Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells [J]. Nat Commun, 2021, 12(1): 2367.
[46] Chen N, Lee Y M. Anion exchange polyelectrolytes for membranes and ionomers [J]. Prog Polym Sci, 2021, 113: 101345.
[47] Park E J, Kim Y S. Quaternized aryl ether-free polyaromatics for alkaline membrane fuel cells: synthesis, properties, and performance - a topical review [J]. J Mater Chem A, 2018, 6(32): 15456-15477.
[48] Zhu Y, Ding L, Liang X, et al. Beneficial use of rotatable-spacer side-chains in alkaline anion exchange membranes for fuel cells [J]. Energ Environ Sci, 2018, 11(12): 3472-3479.
[49] Hu E N, Lin C X, Liu F H, et al. Poly(arylene ether nitrile) anion exchange membranes with dense flexible ionic side chain for fuel cells [J]. J Membr Sci, 2018, 550: 254-265.
[50] Gong F X, Wang R Q, Chen X B, et al. Facile synthesis and the properties of novel cardo poly(arylene ether sulfone)s with pendent cycloaminium side chains as anion exchange membranes [J]. Polym Chem, 2017, 8(29): 4207-4219.
[51] Long H, Kim K, Pivovar B S. Hydroxide degradation pathways for substituted trimethylammonium cations: A DFT study [J]. J Phys Chem C, 2012, 116(17): 9419-9426.
[52] Ono H, Kimura T, Takano A, et al. Robust anion conductive polymers containing perfluoroalkylene and pendant ammonium groups for high performance fuel cells [J]. J Mater Chem A, 2017, 5(47): 24804-24812.
[53] Li N W, Leng Y J, Hickner M A, et al. Highly stable, anion conductive, comb-shaped copolymers for alkaline fuel cells [J]. J Am Chem Soc, 2013, 135(27): 10124-10133.
[54] Han J J, Peng Y Q, Lin B C, et al. Hydrophobic side-chain attached polyarylether-based anion exchange membranes with enhanced alkaline stability [J]. Acs Appl Energ Mater, 2019, 2(11): 8052-8059.
[55] Zhu L, Pan J, Wang Y, et al. Multication side chain anion exchange membranes [J]. Macromolecules, 2016, 49(3): 815-824.
[56] Sun Z, Lin B, Yan F. Anion-exchange membranes for alkaline fuel-cell applications: The effects of cations [J]. Chemsuschem, 2018, 11(1): 58-70.
[57] Marino M G, Kreuer K D. Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids [J]. Chemsuschem, 2015, 8(3): 513-523.
[58] Chen J J, Li C P, Wang J C, et al. A general strategy to enhance the alkaline stability of anion exchange membranes [J]. J Mater Chem A, 2017, 5(13): 6318-6327.
[59] Hugar K M, You W, Coates G W. Protocol for the quantitative assessment organic cation stability for polymer electrolytes [J]. ACS Energy Lett, 2019, 4(7): 1681-1686.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号