二维材料构筑的CO2分离膜研究进展
作者:李卉,王雨琪,叶志镇,彭新生
单位: 1.浙江大学 温州研究院,温州新型光电与纳米材料重点实验室,浙江 温州 325000 2.浙江大学 硅及先进半导体材料全国重点实验室,材料科学与工程学院,杭州 310058
关键词: 二维材料;气体分离;CO2分离膜;分离机制
出版年,卷(期):页码: 2023,43(6):170-179

摘要:
 二维材料由于其独特的纳米片结构,已广泛应用于设计高气体渗透通量和选择性的分离膜中。石墨烯类、二维金属有机骨架、二维过渡金属碳化物/碳氮化物等二维材料中构筑的纳米及纳米尺度孔道为分子输运提供了特殊的通道, 它们是高渗透性和高选择性分子筛分的根本原因。本文综述了近年来二维材料基CO2分离膜的研究进展,包括材料种类、分离膜的制备方法、分离性能及分离机制,并对二维材料基CO2分离膜的应用前景进行了总结与展望。
 Two-dimensional (2D) materials are widely used in the design of separation membranes with high gas permeability and selectivity due to their unique nanostructures. The sub-nanometer scale spaces present in 2D materials such as graphene, 2D metal-organic frameworks, and 2D MXenes provide special channels for molecular transport, including nanopores and nanochannels, which are fundamentally responsible for high permeability and selectivity. This review summarized the types and separation properties of CO2 separation membranes based on 2D materials, the preparation methods and separation mechanisms. And we finally summarize and discuss the prospects of the application of 2D materials in CO2 separation membranes.
李卉(1997—),女,安徽安庆人,硕士研究生,研究方向为CO2分离膜,E-mail:lllihuiaaaa@163.com

参考文献:
 [1] Erickson P, Lazarus M, Piggot G. Limiting fossil fuel production as the next big step in climate policy[J]. Nature Climate Change, 2018, 8(12):1037-1043.
[2] Bhatia S K, Bhatia R K, Jeon J-M, et al. Carbon dioxide capture and bioenergy production using biological system–A review[J]. Renewable Sustainable Energy Reviews, 2019, 110:143-158.
[3] Liu G, Jin W, Xu N. Two-dimensional-material membranes: A new family  of high-performance separation membranes[J]. Angewandte Chemie International Edition, 2016, 55:2-16.
[4] Liu M, Gurr P A, Fu Q, et al. Two-dimensional nanosheet-based gas separation membranes[J]. Journal of Materials Chemistry A, 2018, 6(46):23169-23196.
[5] 李传峰, 钟顺和. 无机膜的气体传递机理和模型[J]. 膜科学与技术, 2000, 20 (3): 33-37.
[6] Ying Y P, Tong M M, Ning S C, et al. Ultrathin Two-dimensional membranes assembled by ionic covalent organic  nanosheets with reduced apertures for gas separation[J]. Journal of the American Chemical Society, 2020, 142(9):4472-4480.
[7] Hosseinzadeh B H, Omidkhah M, Abedini R, et al. Synthesis and characterization of poly(ether-block-amide)mixed matrix membranes incorporated by nanoporous ZSM-5 particles for CO2/CH4 separation. Asia-Pacific[J]. Journal of Chemical Engineering, 2016, 11(4):522-532.
[8] Liu G, Jin W, Xu N. Graphene-basedmembranes[J]. Chemical Society Reviews, 2015, 44(15):5016-5030.
[9] Yin H, Wang J, Xie Z, et al. Highly permeable and selective amino-functionalized MOF CAU-1 membrane for CO2–N2 separation[J]. Chemical Communications, 2014, 50(28):3699-3701.
[10] Wang P, Peng Y, Zhu C, et al. Single phase covalent organic framework staggered stacking nanosheet membrane for CO2 selective separation[J]. Angewandte Chemie International Edition, 2021,60(35):19047-19052.
[11] Ang E H , Chew J W .Two-Dimensional Transition-Metal Dichalcogenide-Based Membrane for Ultrafast Solvent Permeation[J].Chemistry of Materials, 2019, 31: 10002−10007..
[12] Tan C, Zhang H. Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets[J]. Journal of the American Chemical Society, 2016, 46(38):12162-12174.
[13] Xu M, Liang T, Shi M, et al. Graphene-like two-dimensional materials[J]. Chemical Reviews, 2013, 113(5): 3766-3798.
[14] Celebi K, Buchheim J, Wyss R M, et al. Ultimate permeation across atomically thin porous graphene[J]. Science,2014, 344(6181): 289-292.
[15] Kim H W, Yoon H W, Yoon S-M, et al. Selective gas transport through few-layered graphene and graphene oxide membranes[J]. Science, 2013, 342(6154):91-95.
[16] Rea R, Ligi S, Christian M, et al. Permeability and selectivity of PPO/graphene composites as mixed matrix membranes for CO2 capture and gas separation[J]. Polymers, 2018,10(2):1-19.
[17] Suk J W, Piner R D, An J, et al. Mechanical properties of monolayer graphene oxide[J]. ACS Nano, 2010, 4(11):6557-6564.
[18] Zbo?il R, Karlický F, Bourlinos A B, et al. Graphene fluoride: A stable stoichiometric graphene derivative and its chemical conversion to graphene[J]. Small, 2010, 6(24):2885-2891.
[19] Long M, Tang L, Wang D, et al. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions[J]. ACS Nano, 2011, 5(4):2593-2600.
[20] Lin H, Dangwal S, Liu R, et al. Reduced wrinkling in GO membrane by grafting basal-plane groups for improved gas and liquid separations[J]. Journal of membrane science, 2018, 563:336-344.
[21] Lee C S, Moon J, Park J T, et al. Engineering CO2-philic pathway via grafting poly(ethylene glycol) on graphene oxide for mixed matrix membranes with high CO2 permeance [J]. Chemical Engineering Journal, 2023, 453(1):139818.
[22] Guo W, Mahurin S M, Unocic R R, et al. Broadening the gas separation utility of monolayer nanoporous graphene membranes by an ionic liquid gating [J]. Nano Letters, 2020, 20(11): 7995-8000.
[23]Zhao M, Yang Y, Gu X S. MOF based CO2 capture: Adsorption and membrane separation [J]. Inorganic Chemistry Communications, 2023, 152(2023): 110722..
[24] Peng Y , Li Y , Ban Y ,et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes[J].Science,2014,346(6215) :1356-1359.
[25] Qian Q, Asinger P A, Lee M J, et al. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16):8161-8266.
[26] Li Y, Liu H, Wang H, et al. GO-guided direct growth of highly oriented metal-organic framework nanosheet membranes for H2/CO2 separation[J]. Chemical Science, 2018, 9:4132-4141.
[27] Rodenas T, Luz I, Prieto G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation[J]. Nature Materials, 2015, 14(1):48-55.
[28] Kang Z X, Wang S S, Wang R M, et al. Sandwich membranes through a two-dimensional confinement strategy for gas separation[J]. Materials Chemistry Frontiers, 2018, 2(10):1911-1919.
[29] 付静茹,贲腾. 一种新型的共价有机骨架膜的制备与气体分离性能[J]. 化学学报, 2020, 78(8):10.
[30] Liu Y, Wu H , Wu S , et al. Multifunctional covalent organic framework(COF)-Based mixed matrix membranes for enhanced CO2 separation[J]. J Membr Sci, 2020, 618:118693.
[31] Wang S Y, Yang Y H, Liang X, et al. Ultrathin ionic COF membrane via polyelectrolyte-mediated assembly for efficient CO2 separation[J]. Advanced Functional Materials, 2023, 23(386):1-10.
[32] Zhong Y,Li Y, Zhang G K. Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives[J]. Chemical Engineering Journal, 2021, 409(1):128099.
[33] 杨浏鑫,罗文华,汪长安等.新型无机二维材料在气体分离膜领域的研究进展[J].无机材料学报,2020,35(9):959-971. 
[34] Xu P, Zhang X C, Zhao L L, et al. Prominently improved CO2/N2 separation efficiency by ultrathin-ionic-liquid-covered MXene membrane [J]. Sep Purif Technol, 2023, 311(2023):123296.
[35] Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials, 2017, 2(8):17033.
[36] Chhowalla M, Shin H S, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013,5(4): 263-275.
[37] Liu P, Hou J, Zhang Y, et al. Two-dimensional material membranes for critical separations[J]. Inorganic Chemistry Frontiers, 2020, 7(13):2560-2581.
[38] Dlk A, Cphab C, Ccha D, et al. Effect of composition of few-layered transition metal dichalcogenide nanosheets on separation mechanism of hydrogen selective membranes[J]. J Membr Sci, 2021(634): 119419.
[39] Achari A, Sahana S, Eswaramoorthy M. High performance MoS2 membranes: Effects of thermally driven phase transition on CO2 separation efficiency[J]. Energy & Environmental Science, 2016, 9(4):1224–1228. 
 [40] Zhang N, Wu H, Li F, et al. Heterostructured filler in mixed matrix membranes to coordinate physical and chemical selectivities for enhanced CO2 separation[J]. J Membr Sci, 2018, 567:272-280.
[41] Sahoo P, Ishihara S, Yamada K, et al. Iyi N. Rapid exchange between atmospheric CO2 and carbonate anion intercalated within magnesium rich layered double hydroxide[J]. ACS Applied Materials & Interfaces, 2014, 6(20):18352-18359.
[42] Liu Y, Wu H, Min L, et al. 2D layered double hydroxide membranes with intrinsic breathing effect toward CO2 for efficient carbon capture[J]. J Membr Sci, 2019, 598:117663.
[43] Wan X, Wan T, Cao C, Accelerating CO2 transport through nanoconfined magnetic ionic liquid in laminated BN membrane[J]. Chemical Engineering Journal, 2021, 423:130309.
[44] Cheng Y, Pu Y, Zhao D. Two-dimensional membranes: new paradigms for high-performance separation membranes[J]. Chemistry-An Asian Journal, 2020, 15(15): 2241-2270.
[45] Tsou C H, An Q F, Lou S C , et al. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration[J]. J Membr Sci, 2015, 477: 93-100.
[46] Ding L, Wei Y, Wang Y, et al. A two-dimensional lamellar membrane: mxene nanosheet stacks[J]. Angewandte Chemie International Edition, 2017, 56(7): 1825-1829. 
[47] Wang S, Yang L, He G B, et al.  Two-dimensional nanochannel membranes for molecular and ionic separations[J]. Chemical Society Reviews, 2020, 49(4):1071-1089.
[48] Cheng Y, Wang X, Jia C, et al. Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation[J]. J Membr Sci, 2017, 539:213-223.
[49] Akbari A, Sheath P, Martin S T, et al. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide[J]. Nature Communications, 2016, 7(1):10891.
[50] Hu M, and Mi B. Enabling graphene oxide nanosheets as water separation membranes[J]. Environmental Science & Technology, 2013, 47(8):3715-3723.
[51] Moonhyun C, Heo J, Kim H, et al. Control of gas permeability by transforming the molecular structure of silk fibroin in multilayered nanocoatings forCO2 adsorptive separation[J]. J Membr Sci, 2019, 573:554-559
[52] Shen J, Liu G, Huang K, et al. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving[J]. ACS Nano, 2016, 10(3):3398-3409.
[53] Chen C, Wang J, Liu D, et al. Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation[J]. Nature Communications, 2018, 9(1):1-8.
[54] 洪细鲁. 二维MXene膜及其复合膜在H2/CO2气体分离中的应用[D]. 广州:华南理工大学,2021.
[55] Rao M B, Sircar S. Nanoporous carbon membranes for separation of gas mixtures by selective surface flow[J]. J Membr Sci, 1993, 85(3):253-264.
[56] Knudsen M. The laws of molecular flow and of inner friction flow of gases through tubes[J]. J Membr Sci, 1995, 100(1):23-25.
[57] Mi, B. Graphene oxide membranes for ionic and molecular sieving[J]. Science, 2014, 343(6172):740.
[58] Zhao Y, Xie Y, Liu Z, et al. Two‐dimensional material membranes: an emerging platform for controllable mass transport applications[J]. Small, 2015, 10(22):4521-4542.
[59] Wijmans J G, Baker R W. The solution-diffusion model: A review[J]. J Membr Sci, 1995, 107(1-2):1-21.
[60] Kim H W, Yoon H W, Yoo B M, et al. High-performance CO2-philic graphene oxide membranes under wet-conditions[J]. Chemical Communications, 2014, 50(88):13563-13566.
[61] Chen D, Ying W, Guo Y, et al. Enhanced gas separation through nanoconfined ionic liquid in laminated MoS2 membrane[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 44251-44257.
[62] Zhang S, Zhang J, Zhang Y, et al. Nanoconfined ionic liquids[J]. Chemical Reviews, 2017, 117(10):6755-6833.
[63] Li Y, Wang S, He G , et al. Facilitated transport of small molecules and ions for energy-efficient membranes[J]. Chemical Society Reviews, 2014, 44(1):103-118.
[64] Cussler E L, Aris R, Bhown A. On the limits of facilitated diffusion[J]. J Membr Sci, 1989, 43:149-164.
[65] Dou H, Xu M, Jiang B, et al. Bioinspired graphene oxide membranes with dual transport mechanisms for precise molecular separation[J]. Advanced Functional Materials, 2019, 29(50):1-10.
[66] Ying W, Peng X. Graphene oxide nanoslit-confined AgBF4/ionic liquid for efficiently separating olefin from paraffin[J]. Nanotechnology, 2020, 31(8):085703.
[67] Ying W, Zhou K, Hou Q G, et al. Selectively tuning gas transport through ionic liquid filled graphene oxide nanoslits using an electric field[J]. Journal of Materials Chemistry A, 2019, 7(25): 15062-15067.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号