含磷酸结构全氟磺酸质子交换膜研究进展
作者:谢旭秋,王丽,赵淑会,贾文静,李永哲,魏刚,张恒,刘训道,徐安厚
单位: 1 济南大学 化学化工学院, 济南 250024;2 济南大学 材料科学与工程学院, 济南 250024;3 山东东岳未来氢能材料股份有限公司,山东 淄博 256401
关键词: 磷酸;质子交换膜;全氟磺酸;燃料电池
出版年,卷(期):页码: 2023,43(6):202-211

摘要:
 质子交换膜燃料电池(PEMFCs)具有独特的能源转化和储存方式,因此引起了科学家广泛的研究兴趣。全氟磺酸质子交换膜(PFSA)是目前低温型PEMFCs(<100℃)中应用最为广泛的关键核心材料之一,在很大程度上决定着PEMFCs的性能优劣。提高工作温度可以赋予PEMFCs更高的转化效率、更快电极反应、更高的杂质耐受能力、更便捷的水热管理方式等,然而,质子交换膜(PEM)在高温下的传质性能衰减阻碍PEMFCs的高温应用。引入磷酸结构是目前改善PEM高温传质性能常用的策略。本文总结了近年来含磷酸结构全氟磺酸质子交换膜的研究进展,并讨论了在引入磷酸结构后存在的问题,为后续的高温质子交换膜的研究工作提供指导作用。
 Proton exchange membrane fuel cells (PEMFCs) with unique energy conversion and storage have been received widespread attention. Perfluorosulfonic acid proton exchange membrane (PFSA) is one of the most widely used key core materials in low-temperature PEMFCs (<100°C) at present and largely determines the PEMFCs performance. Increasing the operating temperature can confer PEMFCs higher conversion efficiency, faster electrode response, higher impurity tolerance, more convenient hydrothermal management methods, etc. However, the degradation of mass transfer performance of proton exchange membrane (PEM) at high temperature hinders the high temperature application of PEMFCs. Incorporation phosphoric acid structure into membrane is a commonly used strategy to improve the high-temperature mass transfer performance of PEMs. This paper summarizes the progress of phosphoric acid contained perfluorinated proton exchange membranes in recent years and discusses the problems in phosphoric acid contained PEMs, which paves the guidance for the PEMs at high-temperature in related fields.
谢旭秋(1998—),女,硕士研究生,河北省涿州市人,研究方向为有机氟高分子材料

参考文献:
 [1] 童鑫,熊哲,高新宇,等.质子交换膜燃料电池研究现状及发展[J].硅酸盐通报, 2022, 41(9): 3243-3258. 
[2] 项定先. 碳达峰碳中和目标下的能源现状分析及发展趋势路径[J].工业安全与环保, 2021, 47(S1): 20-24. 
[3] 本刊编辑部. 科技引领共绘“双碳”创新蓝图[J].广东科技, 2021, 30(10): 7.
[4] 邹善宝. 三元素掺杂碳材料的制备及其ORR和OER性能研究[D]. 济南: 济南大学, 2021. 
[5] 于福东. 质子交换膜燃料电池温度控制策略及优化[D]. 长春: 吉林大学, 2022.
[6] 段宇廷. Nafion基复合质子交换膜微观结构定向调控及稳定性研究[D]. 长春: 吉林大学, 2022.
[7] 白钰, 王拴紧, 肖敏, 等. 燃料电池用高温质子交换膜[J]. 化学进展, 2021, 33(3): 426-441.
[8] 武楷文. 氮杂环磺化聚芳醚砜质子交换膜的制备及性能[D]. 大连: 大连理工大学, 2022.
[9] 鲍冰, 刘锋, 段骁, 等. 质子交换膜燃料电池膜电极组件研究进展综述[J]. 贵金属, 2019, 40(2): 73-82.
[10] 张烁烁, 王洁, 马晓娟, 等. 燃料电池全氟质子增强膜的制备及其化学降解机理研究[J]. 膜科学与技术, 2020, 40(5): 39-46. 
[11] 何泽兴, 史成香, 陈志超, 等. 质子交换膜电解水制氢技术的发展现状及展望[J]. 化工进展, 2021, 40(9): 4762-4773.
[12] Kusoglu A, Weber A Z. New insights into perfluorinated sulfonic-acid ionomers[J]. Chemical Reviews, 2017, 117(3): 987-1104.
[13] 赵盈盈. 全钒液流电池用全氟磺酸复合膜的制备与性能研究[D]. 合肥: 中国科学技术大学, 2022.
[14] 石守稳. 燃料电池用全氟磺酸质子交换膜构效关系研究[D]. 天津: 天津大学, 2017.
[15] Hsu W Y, Gierke T D. Ion transport and clustering in Nafion perfluorinated membranes[J]. J Membr Sci, 1983, 13(3): 307-326.
[16] Dreyfus B, Gebel G, Aldebert P, et al. Distribution of the "micelles" in hydrated perfluorinated ionomer membranes from sans experiments[J]. Journal De Physique, 1990, 51(12): 1341-1354.
[17] Fujimura M, Hashimoto T, Kawai H. Small-angle x-ray scattering study of perfluorinated ionomer membranes. 1. Origin of two scattering maxima[J]. Macromolecules, 1981, 14(5): 1309-1315.
[18] Fujimura M, Hashimoto T, Kawai H. Small-angle x-ray scattering study of perfluorinated ionomer membranes. 2. Models for ionic scattering maximum[J]. Macromolecules, 1982, 15(1): 136-144.
[19] Haobold H G, Vad T, Jungbluth H, et al. Nano structure of Nafion: a SAXS study[J]. Electrochimica Acta, 2001, 46(10/11): 1559-1563.
[20] 张悦. 电池用质子交换膜的改性及性能研究[D]. 上海: 上海交通大学, 2019.
[21] 郑博文, 姬峰, 邓呈维, 等. 磷酸掺杂聚苯并咪唑类高温质子交换膜研究进展[J]. 高分子通报, 2023, 36(4): 430-445.
[22] Haider R, Wen Y, Ma Z F, et al. High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies[J]. Chemical Society Reviews, 2021, 50(2): 1138-1187.
[23] Liu R H, Dai Y, Li J Y, et al. 1-(3-Aminopropyl) imidazole functionalized poly (vinyl chloride) for high temperature proton exchange membrane fuel cell applications[J]. J Membr Sci, 2021, 620: 118873.
[24] 庞博昊, 段宇廷, 赵成吉. 功能化POSS/磷酸共掺杂高温质子交换膜制备及其性能[J]. 膜科学与技术, 2023, 43(1): 83-90+98.
[25] 俞博文. 氢燃料电池质子交换膜研究现状及展望[J]. 塑料工业, 2021, 49(9): 6-10+90.
[26] Liu S, Liu L, Wang Y, et al. Inorganic-organic composite membranes containing amino-functionalized mesoporous silica loaded phosphotungstic acid with enhanced fuel cell performance and stability[J]. International Journal of Hydrogen Energy, 2023, 48(25): 9436-9450
[27] 孙鹏, 李忠芳, 王传刚, 等. 燃料电池用高温质子交换膜的研究进展[J]. 材料工程, 2021, 49(01): 23-34.
[28] Wong C.Y., Wong W. Y., Ramya K., et al. Additives in proton exchange membranes for low- and high-temperature fuel cell applications: A review[J]. International Journal of Hydrogen Energy, 2019, 44(12): 6116-6135.
[29] Tang H Y, Gao J, Wang Y D, et al. Phosphoric‐Acid retention in high‐temperature proton‐exchange membranes[J]. Chemistry–A European Journal, 2022, 28(70): e202202064.
[30] Labalme E, David G, Buvat P, et al. A simple strategy based on a highly fluorinated polymer blended with a fluorinated polymer containing phosphonic acid to improve the properties of PEMFCs[J]. New Journal of Chemistry, 2019, 43(28): 11141-11147.
[31] 宋洁瑞, 肖意明, 张蕾,等. 磷酸掺杂bSPEEK-OPBI共混质子交换膜的制备及性能[J]. 膜科学与技术, 2022, 42(1): 1-9.
[32] Jiang J, Li Z, Xiao M, et al. Quaternary ammonium-biphosphate ion-pair based copolymers with continuous H+ transport channels for high-temperature proton exchange membrane[J]. J Membr Sci, 2022, 660: 120878.
[33] 李金晟, 葛君杰, 刘长鹏, 等. 燃料电池高温质子交换膜研究进展[J]. 化工进展, 2021, 40(9): 4894-4903.
[34] 王燕. 交联型支化聚苯并咪唑类高温质子交换膜的制备及性能研究[D]. 淄博: 山东理工大学, 2021.
[35] Chen H, Wang S, Liu F X, et al. Base-acid doped polybenzimidazole with high phosphoric acid retention for HT-PEMFC applications[J]. J Membr Sci, 2020, 596: 117722.
[36] 侯敬贺, 刘闪闪, 肖振雨, 等.燃料电池无机-有机复合质子交换膜的研究进展[J]. 化工新型材料, 2018, 46(11): 44-48+53.
[37] Xu G X, Dong X W, Xue B, et al. Recent approaches to achieve high temperature operation of Nafion membranes[J]. Energies, 2023, 16(4): 1565.
[38] Mohammad B K, Fereidoon M, Khadijeh H. Recent approaches to improve Nafion performance for fuel cell applications: A review[J]. International Journal of Hydrogen Energy, 2019, 44(54): 28919-28938.
[39] Yang X B, Zhao L, Sui X, et al. Phosphotungstic acid immobilized nanofibers-Nafion composite membrane with low vanadium permeability and high selectivity for vanadium redox flow battery[J]. Journal of Colloid and Interface Science, 2019, 542: 177-186.
[40] He H B, Zhu Y L, Li T T, et al. Supramolecular anchoring of polyoxometalate amphiphiles into Nafion nanophases for enhanced proton conduction[J]. ACS Nano, 2022, 16: 19240-19252.
[41] Zhu L Y, Li Y C, Zhao J Y, et al. Enhanced proton conductivity of Nafion membrane induced by incorporation of MOF-anchored 3D microspheres: a superior and promising membrane for fuel cell applications[J]. Chemical Communications, 2022, 58(17): 2906-2909.
[42] Liu F X, Wang S, LI J S, et al. Polybenzimidazole/ionic-liquid-functional silica composite membranes with improved proton conductivity for high temperature proton exchange membrane fuel cells[J]. J Membr Sci, 2017, 541: 492–499. 
[43] Tanja O, Christoph H, Stephan G, et al. Influence of the size and shape of silica nanoparticles on the properties and degradation of a PBI-based high temperature polymer electrolyte membrane[J]. J Membr Sci, 2014, 454: 12–19.
[44] Qu E, Hao X F, Xiao M, et al. Proton exchange membranes for high temperature proton exchange membrane fuel cells: Challenges and perspectives[J]. Journal of Power Sources, 2022, 533: 231386. 
[45] Trevani L N, Lepori C M. O., Garro L Y, et al. Speciation and Proton Conductivity of Phosphoric Acid Confined in Mesoporous Silica[J]. ACS Applied Materials & Interfaces, 2022, 14(29): 33248-33256.
[46] Sulaiman R R R, Walvekar R, Wong W Y, et al. Proton conductivity enhancement at high temperature on polybenzimidazole membrane electrolyte with acid-functionalized graphene oxide fillers[J]. Membranes, 2022, 12(3): 344.
[47] Wang S J, Zhu T H, Shi B B, et al. Porous organic polymer with high-density phosphoric acid groups as filler for hybrid proton exchange membranes[J]. J Membr Sci, 2023, 666: 121147.
[48] Pandey J, Seepana M M. Synthesis of Proton Conducting and Highly Stable PWA-ZRP-Doped Composite Membrane for Proton Exchange Membrane Fuel Cell[J]. Journal of Electrochemical Energy Conversion and Storage, 2023, 20(2): 020906.
[49] Mahreni A, Mohamad A B, Kadhum A A H, et al. Nafion/silicon oxide/phosphotungstic acid nanocomposite membrane with enhanced proton conductivity[J]. J Membr Sci, 2009, 327(1/2): 32-40.
[50] Xu G X, Xue S J, Wei Z L, et al. Stabilizing phosphotungstic acid in Nafion membrane via targeted silica fixation for high-temperature fuel cell application[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4301-4308.
[51] Zhang B, Cao Y, Jiang S T, et al. Enhanced proton conductivity of Nafion nanohybrid membrane incorporated with phosphonic acid functionalized graphene oxide at elevated temperature and low humidity[J]. J Membr Sci, 2016, 518: 243-253.
[52] Donnadio A, D’amato R, Marmottini F, et al. On the evolution of proton conductivity of aquivion membranes loaded with CeO2 based nanofillers: Effect of temperature and relative humidity[J]. Journal of Membrane Science, 2019, 574: 17-23.
[53] Maiti J, Kakati N, Woo S P, et al. Nafion® based hybrid composite membrane containing Go and dihydrogen phosphate functionalized ionic liquid for high temperature polymer electrolyte membrane fuel cell[J]. Composites Science and Technology, 2018, 155: 189-196.
[54] Zhuang R, Lan M Q, Zhu D Y, et al. Synergistically promoted proton conduction of proton exchange membrane by phosphoric acid functionalized carbon nanotubes and graphene oxide[J]. J Membr Sci, 2022, 659: 120810.
[55] Sen U, Acar O, Celik S U, et al. Proton-conducting blend membranes of Nafion/poly (vinylphosphonic acid) for proton exchange membrane fuel cells[J]. Journal of Polymer Research, 2013, 20(9): 1-7.
[56] Zhang H X, Hu Q T, Zheng X W, et al. Incorporating phosphoric acid-functionalized polydopamine into Nafion polymer by in situ sol-gel method for enhanced proton conductivity[J]. J Membr Sci, 2019, 570: 236-244.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号