宽温域质子交换膜在燃料电池中的研究进展
作者:张 良,刘梦娇,梁家珍,朱丹依,黄 菲,薛立新,高从堦
单位: 1. 膜分离与水科学技术研究院,浙江工业大学 化学工程学院,杭州310014; 2. 温州大学 化学与材料工程学院,温州325035
关键词: 燃料电池;质子交换膜;宽温域;服役温度;质子传导;稳定性
出版年,卷(期):页码: 2023,43(6):212-222

摘要:
质子交换膜燃料电池(proton exchange membrane fuel cells,PEMFCs)因其功率密度高、体积质量小、运行安全可靠和环境友好等优点而备受重视,在便携式设备、交通运输以及固定装置等领域具有重要应用前景。质子交换膜(proton exchange membrane,PEM)作为核心部件,对 PEMFCs的综合性能和操作灵活性起到了直接的影响。然而,目前常规的两种PEM(以磺酸型水基和芳杂环型磷酸基电解质为代表)仅能在各自有限的温度和湿度(relative humidity, RH)范围内使用(80~90 oC/100% RH、120~200 oC/0% RH),仍存在诸多技术壁垒需要克服,制约了PEMFCs的商业化发展。本文将结合近年来国内外研究进展,以关键性科学问题为导向,梳理并归纳了宽温域质子交换膜的构建策略与优化思路,并对未来的发展方向与趋势做出展望。
 Proton exchange membrane fuel cells(PEMFCs)have garnered significant attention in diverse fields, including portable devices, transportation, and fixed installations, owing to their notable features such as high-power density, compact size, reliable safety, and environmental friendliness. The performance and operational flexibility of PEMFCs systems heavily rely on the proton exchange membrane(PEM), which serve as a critical component. However, conventional PEMs based on perfluorosulfonic acid and phosphoric acid doped polymer electrolytes are constrained by their limited operating temperature and relative humidity(RH) ranges(80—90 oC/100% RH、120—200 oC/0% RH). Consequently, these restrictions have hindered the commercialization of PEMFCs. This comprehensive review provides an overview of key scientific issues and recent research advancements, with a primary focus on the design strategies and optimization approaches for wide-temperature-range PEMs . Furthermore, it outlines future development prospects and emerging trends in this field.
张良(1998-),男,山西运城人,博士生,主要从事质子交换膜材料的制备与性能研究

参考文献:
 1.Sopian K,Wan Daud W R.Challenges and future developments in proton exchange membrane fuel cells[J].Renewable Energy,2006,31(5):719-727.
2.Zhang J,Aili D,Lu S F,et al.Advancement toward polymer electrolyte membrane fuel cells at elevated temperatures[J].Research,2020,2020:9089405.
3.Peighambardoust S J,Rowshanzamir S,Amjadi M.Review of the proton exchange membranes for fuel cell applications[J].International Journal of Hydrogen Energy,2010,35(17):9349-9384.
4.Schmittinger W,Vahidi A.A review of the main parameters influencing long-term performance and durability of PEM fuel cells[J].Journal of Power Sources,2008,180(1):1-14.
5.Yan Q G,Toghiani H,Lee Y W,et al.Effect of sub-freezing temperatures on a PEM fuel cell performance,startup and fuel cell components[J].Journal of Power Sources,2006,160(2):1242-1250.
6.Oszcipok M,Riemann D,Kronenwett U,et al.Statistic analysis of operational influences on the cold start behaviour of PEM fuel cells[J].Journal of Power Sources,2005,145(2):407-415.
7.Lee S Y,Kim H J,Cho E,et al.Performance degradation and microstructure changes in freeze-thaw cycling for PEMFC MEAs with various initial microstructures[J].International Journal of Hydrogen Energy,2010,35(23):12888-12896.
8.Ogawa T,Aonuma T,Tamaki T,et al.The proton conduction mechanism in a material consisting of packed acids[J].Chemical Science,2014,5(12):4878-4887.
9.Duan X Q,Jing Z J,Song D,et al.Preparation and investigation on the low temperature proton exchange membranes with the enhanced proton conductivity at subzero temperature[J]. J Mol Liq, 2021. 328(15): 115377.
10.Jia J,Liu K,Zuo T T,et al.Enhancing proton conductivity at subzero temperature through constructing the well-ordered structure based on carbon dots[J].SSRN Electronic Journal,2022,653(5): 120536.
11.Takamuku S,Jannasch P.Multiblock copolymers containing highly sulfonated poly(arylene sulfone) blocks for proton conducting electrolyte membranes[J].Macromolecules,2012,45(16):6538-6546.
12.Hou J B,Yu H M,Wang L,et al.Conductivity of aromatic-based proton exchange membranes at subzero temperatures[J].Journal of Power Sources,2008,180(1):232-237.
13.Ye Y X,Zhang L Q,Peng Q F,et al.High anhydrous proton conductivity of imidazole-loaded mesoporous polyimides over a wide range from subzero to moderate temperature[J].Journal of the American Chemical Society,2015,137(2):913-918.
14.Ye Y X,Wu X Z,Yao Z Z,et al.Metal-organic frameworks with a large breathing effect to host hydroxyl compounds for high anhydrous proton conductivity over a wide temperature range from subzero to 125 °C[J].Journal of Materials Chemistry A,2016,4(11):4062-4070.
15.Bae B,Yoda T,Miyatake K,et al.Proton-conductive aromatic ionomers containing highly sulfonated blocks for high-temperature-operable fuel cells[J].Angewandte Chemie International Edition,2010,49(2):317-320.
16.Park C H,Lee S Y,Hwang D S,et al.Nanocrack-regulated self-humidifying membranes[J].Nature,2016,532(7600):480-483.
17.Nam L V,Choi E,Jang S,et al.Patterned mesoporous TiO2 microplates embedded in Nafion® membrane for high temperature/low relative humidity polymer electrolyte membrane fuel cell operation[J].Renewable Energy,2021,180:203-212.
18.Li Y,Wu H,Yin Y H,et al.Fabrication of Nafion/zwitterion-functionalized covalent organic framework composite membranes with improved proton conductivity[J].Journal of Membrane Science,2018,568:1-9.
19.Rao Z,Feng K,Tang B B,et al.Construction of well interconnected metal-organic framework structure for effectively promoting proton conductivity of proton exchange membrane[J].Journal of Membrane Science,2017,533:160-170.
20.Li Y,Shi Y,Mehio N,et al.More sustainable electricity generation in hot and dry fuel cells with a novel hybrid membrane of Nafion/nano-silica/hydroxyl ionic liquid[J].Applied Energy,2016,175:451-458.
21.Xu G X,Xue S J,Wei Z L,et al.Stabilizing phosphotungstic acid in Nafion membrane via targeted silica fixation for high-temperature fuel cell application[J].International Journal of Hydrogen Energy,2021,46(5):4301-4308.
22.Yin B B,Wu Y N,Liu C F,et al.An effective strategy for the preparation of a wide-temperature-range proton exchange membrane based on polybenzimidazoles and polyacrylamide hydrogels[J].Journal of Materials Chemistry A,2021,9(6):3605-3615.
23.Yin B B,Liang R,Liang X X,et al.Construction of stable wide-temperature-range proton exchange membranes by incorporating a carbonized metal–organic frame into polybenzimidazoles and polyacrylamide hydrogels[J].Small,2021,17(43):2103214.
24.Suzuki K,Iizuka Y,Tanaka M,et al.Phosphoric acid-doped sulfonated polyimide and polybenzimidazole blend membranes:High proton transport at wide temperatures under low humidity conditions due to new proton transport pathways[J].Journal of Materials Chemistry,2012,22(45):23767-23772.
25.Guo Z M,Perez-Page M,Chen J N,et al.Recent advances in phosphoric acid-based membranes for high-temperature proton exchange membrane fuel cells[J].Journal of Energy Chemistry,2021,63:393-429.
26.Lee K S,Spendelow J S,Choe Y K,et al.An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs[J].Nature Energy,2016,1:16120.
27.Lee A S,Choe Y K,Matanovic I,et al.The energetics of phosphoric acid interactions reveals a new acid loss mechanism[J].Journal of Materials Chemistry A,2019,7(16):9867-9876.
28.Matanovic I,Lee A S,Kim Y S.Energetics of base–acid pairs for the design of high-temperature fuel cell polymer electrolytes[J].The Journal of Physical Chemistry B,2020,124(35):7725-7734.
29.Xiao L X,Zhang H F,Scanlon E,et al.High-temperature polybenzimidazole fuel cell membranes via a sol–gel process[J].Chemistry of Materials,2005,17(21):5328-5333.
30.Lu Y Y,Wen Y T,Huang F,et al.Rational design and demonstration of a high-performance flexible Zn/V2O5 battery with thin-film electrodes and para-polybenzimidazole electrolyte membrane[J]. Energy Storage Mater, 2020,27: 418-425.
31.Yu S,Benicewicz B C.Synthesis and properties of functionalized polybenzimidazoles for high-temperature PEMFCs[J].Macromolecules,2009,42(22):8640-8648.
32.Pingitore A T,Huang F,Qian G Q,et al.Durable high polymer content m/p-polybenzimidazole membranes for extended lifetime electrochemical devices[J].ACS Applied Energy Materials,2019,2(3):1720-1726.
33.Molleo M A,Chen X,Ploehn H J,et al.High polymer content 2,5-pyridine-polybenzimidazole copolymer membranes with improved compressive properties[J].Fuel Cells,2015,15(1):150-155.
34.Tang H Y,Geng K,Wu L,et al.Fuel cells with an operational range of–20 ℃ to 200 ℃ enabled by phosphoric acid-doped intrinsically ultramicroporous membranes[J].Nature Energy,2022,7(2):153-162.
35.Wang P,Lin J J,Wu Y N,et al.Construction of high-density proton transport channels in phosphoric acid doped polybenzimidazole membranes using ionic liquids and metal-organic frameworks[J].Journal of Power Sources,2023,560:232665.
36.Mukhopadhyay S,Das A,Jana T,et al.Fabricating a MOF material with polybenzimidazole into an efficient proton exchange membrane[J].ACS Applied Energy Materials,2020,3(8):7964-7977.
37.Peng J W,Wang S C,Fu X Z,et al.Achieving over 1,000mWcm–2 power density based on locally high-density cross-linked polybenzimidazole membrane containing pillar[5]arene bearing multiple alkyl bromide as a cross-linker[J].Advanced Functional Materials,2023,33(6):2212464.
38.Li W,Liu W,Zhang J,et al.Porous proton exchange membrane with high stability and low hydrogen permeability realized by dense double skin layers constructed with amino tris (methylene phosphonic acid)[J].Advanced Functional Materials,2023,33(6):2210036.
39.Araya S S,Zhou F,Liso V,et al.A comprehensive review of PBI-based high temperature PEM fuel cells[J].International Journal of Hydrogen Energy,2016,41(46):21310-21344.
40.Melchior J P,Kreuer K D,Maier J.Proton conduction mechanisms in the phosphoric acid–water system (H4P2O7–H3PO4·2H2O):A1H,31P and 17 PFG-NMR and conductivity study[J].Physical Chemistry Chemical Physics,2017,19(1):587-600.
41.Chen X M,Qian G Q,Molleo M A,et al.High temperature creep behavior of phosphoric acid-polybenzimidazole gel membranes[J].Journal of Polymer Science Part B:Polymer Physics,2015,53(21):1527-1538.
42.Huang F,Pingitore A T,Benicewicz B C.High polymer content m/p-polybenzimidazole copolymer membranes for electrochemical hydrogen separation under differential pressures[J].Journal of the Electrochemical Society,2020,167(6):063504.
43.Guo Z B,Xu X,Xiang Y,et al.New anhydrous proton exchange membranes for high-temperature fuel cells based on PVDFâ??PVP blended polymers[J].Journal of Materials Chemistry A,2015,3(1):148-155.
44.Han M M,Zhang G,Liu Z G,et al.Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells[J].Journal of Materials Chemistry,2011,21(7):2187-2193.
45.Wang S,Zhao C J,Ma W J,et al.Silane-cross-linked polybenzimidazole with improved conductivity for high temperature proton exchange membrane fuel cells[J].Journal of Materials Chemistry A,2013,1(3):621-629.
46.Zhang J,Aili D,Bradley J,et al.in situ formed phosphoric acid/phosphosilicate nanoclusters in the exceptional enhancement of durability of polybenzimidazole membrane fuel cells at elevated high temperatures[J].Journal of the Electrochemical Society,2017,164(14):F1615-F1625.
47.Aili D,Zhang J,Jakobsen M T D,et al.Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200 °C[J].Journal of Materials Chemistry A,2016,4(11):4019-4024.
48.Cheng Y,Zhang J,Lu S F,et al.High CO tolerance of new SiO2 doped phosphoric acid/polybenzimidazole polymer electrolyte membrane fuel cells at high temperatures of 200-250 ℃[J].International Journal of Hydrogen Energy,2018,43(49):22487-22499.
49.Hao X F,Li Z,Xiao M,et al.A phosphonated phenol-formaldehyde-based high-temperature proton exchange membrane with intrinsic protonic conductors and proton transport channels[J].Journal of Materials Chemistry A,2022,10(20):10916-10925.
50.Li Y F,Hu J,Li H B,et al.Performance of an intermediate-temperature fuel cell with a CsH5(PO4)2-doped polybenzimidazole membrane[J]. J Electrochem Soc, 2022. 169(2): 024505.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号