正渗透工艺用于 微藻生物燃料脱水的研究进展
作者:温海涛,张宏伟,王捷,贾辉,吴云,张新波
单位: 1. 天津工业大学材料学院,天津 300387;2. 天津工业大学 分离膜与膜过程国家重点实验室,天津 300387;3. 天津城建大学 环境与市政工程学院,天津 300384
关键词: 微藻;正渗透;膜污染;浓差极化;汲取液
出版年,卷(期):页码: 2023,43(6):223-231

摘要:
 微藻作为第三代生物能源,在应对传统能源危机方面具有十分巨大的发展潜力。由于微藻脱水能耗巨大,导致后续的微藻生物燃料制备难以实现大规模商业化生产。针对此瓶颈问题,研究人员尝试采用正渗透工艺进行微藻脱水。基于近年来正渗透技术应用于微藻脱水的研究现状,综述了膜污染成因与控制、膜材料开发与膜结构优化、工艺节能增效等方面的研究进展,着重总结了在藻种、正渗透膜以及汲取液等明显影响微藻脱水性能因素方面的研究成果,并指出了未来采用正渗透技术进行微藻脱水的发展趋势。
 Microalgae, as the third generation of bioenergy, has great development potential in dealing with the traditional energy crisis. Because of the huge energy consumption of microalgae dewatering, it is difficult to realize large-scale commercial production in the subsequent preparation of microalgae biofuel. In order to solve this bottleneck problem, researchers tried to use forward osmosis(FO)process to dewatering microalgae. Based on the research status of FO technology in microalgae dewatering in recent years, this paper summarizes the research 1progress in the causes and control of membrane fouling, the development of membrane materials and the optimization of membrane structure, and the energy saving and efficiency improvement of the process. The main aspects involving the dewatering performance, such as algae species, FO membrane and DS, are summarized. Finally, the development trends of FO technology in microalgae dewatering in the future are put forward.
温海涛(1973-),男,河北迁安,高级实验师,博士在读,从事膜科学与技术方面的研究

参考文献:
 [1] Brennan L, Owende P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products [J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 557-577.
[2] 孟倩雅,马桂霞,母锐敏,等.污水中微藻的生物絮凝采收技术及展望[J].工业水处理,2022,42(12):34-40.
[3] 赵青云,韩飞,石向星等.微藻生物柴油固碳减排和经济效益研究[J/OL].工业水处理:1-17 [2023-03-10].
[4] Singh G, Patidar S K. Microalgae harvesting techniques: A review [J]. Journal of Environmental Management, 2018, 217: 499-508.
[5] Bilad M R, Arafat H A, Vankelecom I F J. Membrane technology in microalgae cultivation and harvesting: a review [J]. Biotechnology Advances, 2014, 32(7): 1283-1300.
[6] Buckwalter P, Embaye T, Gormly S, et al. Dewatering microalgae by forward osmosis[J]. Desalination, 2013,312:19-22.
[7] Yazdanabad S K, Samimi A, Shokrollahzadeh S, et al. Microalgae biomass dewatering by forward osmosis: Review and critical challenges[J]. Algal Research, 2021, 56: 102323.
[8] Honda R, Rukapan W, Komura H, et al. Effects of membrane orientation on fouling characteristics of forward osmosis membrane in concentration of microalgae culture[J]. Bioresource Technology, 2015, 197: 429-433.
[9] Lananan F, Yunos F H M, Nasir N M, et al. Optimization of biomass harvesting of microalgae, Chlorella sp. utilizing auto-flocculating microalgae, Ankistrodesmus sp. as bio-flocculant[J]. International Biodeterioration & Biodegradation, 2016, 113: 391-396.
[10] Zhou S, Shao Y, Gao N, et al. Characterization of algal organic matters of Microcystis aeruginosa: Biodegradability, DBP formation and membrane fouling potential[J]. Water Research, 2014, 52: 199-207.
[11] Guruvaiah M, Narra M, Dixit G, et al. Isolation, screening and optimization of estuary region (Khambhat, Gujarat) microalgae for lipid/oil production[J]. International Journal of Applied Sciences and Biotechnology, 2015, 3(2): 197-201.
[12] Ma C, Huang J, Wang L, et al. Microalgae dewatering using a hybrid dead-end/cross-flow forward osmosis system: Influence of microalgae properties, draw solution properties, and hydraulic conditions[J]. Algal Research, 2020, 48: 101899.
[13] Ríos S D, Salvadó J, Farriol X, et al. Antifouling microfiltration strategies to harvest microalgae for biofuel[J]. Bioresource Technology, 2012, 119: 406-418.
[14] Zhuang L L, Wu Y H, Espinosa V M D, et al. Soluble algal products (SAPs) in large scale cultivation of microalgae for biomass/bioenergy production: a review[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 141-148.
[15] Zhou H, Ji C, Li J Q, et al. Understanding the interaction mechanism of algal cells and soluble algal products foulants in forward osmosis dewatering[J]. J Membr Sci, 2021, 620: 118835.
[16] Ma C, Li Q, Liu J, et al. Forward osmosis treatment of algal-rich water: Characteristics and mechanism of membrane fouling[J]. Journal of Hazardous Materials, 2022, 423: 126984.
[17] Ma C, Wang G, Liu X, et al. A novel gravity sedimentation-Forward osmosis hybrid technology for microalgal dewatering[J]. Chemosphere, 2022, 308: 136300.
[18] Ji C C, Chen K Y, Deng S K, et al. Fouling evolution of extracellular polymeric substances in forward osmosis based microalgae dewatering[J]. Water Research, 2023, 229: 119395.
[19] Manrique R B, Ubando A T, David M Y, et al. Dewatering of Nannochloropsis Sp Via Forward Osmosis: A Molecular Dynamics Study[J]. Available at SSRN 3607811, 2020.
[20] Hafiz M A, Hawari A H, Das P, et al. Comparison of dual stage ultrafiltration and hybrid ultrafiltration-forward osmosis process for harvesting microalgae (Tetraselmis sp.) biomass[J]. Chemical Engineering and Processing-Process Intensification, 2020, 157: 108112.
[21] Volpin F, Yu H, Cho J, et al. Human urine as a forward osmosis draw solution for the application of microalgae dewatering[J]. Journal of Hazardous Materials, 2019, 378: 120724.
[22] Xu X, Zhang H, Gao T, et al. Impacts of applied voltage on forward osmosis process harvesting microalgae: Filtration behaviors and lipid extraction efficiency[J]. Science of The Total Environment, 2021, 773: 145678.
[23] Ryu H, Kim K, Cho H, et al. Nutrient-driven forward osmosis coupled with microalgae cultivation for energy efficient dewatering of microalgae[J]. Algal Research, 2020, 48: 101880.
[24] Larronde-Larretche M, Jin X. The Influence of Forward Osmosis Module Configuration on Nutrients Removal and Microalgae Harvesting in Osmotic Photobioreactor[J]. Membranes, 2022, 12(9): 892.
[25] Molitor H R, Schaeffer A K, Schnoor J L. Sustainably cultivating and harvesting microalgae through sedimentation and forward osmosis using wastes[J]. ACS Omega, 2021, 6(27): 17362-17371.
[26] Nawi N I M, Arifin S N H M, Hizam S M, et al. Chlorella vulgaris broth harvesting via standalone forward osmosis using seawater draw solution[J]. Bioresource Technology Reports, 2020, 9: 100394.
[27] Wang Z, Lee Y Y, Scherr D, et al. Mitigating nutrient accumulation with microalgal growth towards enhanced nutrient removal and biomass production in an osmotic photobioreactor[J]. Water Research, 2020, 182: 116038. 
[28] Munshi F. Forward osmosis for algae dewatering and electrical field-driven membrane fouling mitigation, 2019, Electronic Theses and Dissertations, 2004-2019. 6393.
[29] Liao Y, Bokhary A, Maleki E, et al. A review of membrane fouling and its control in algal-related membrane processes[J]. Bioresource Technology, 2018, 264: 343-358.
[30] Zainan N H, Srivatsa S C, Li F, et al. Quality of bio-oil from catalytic pyrolysis of microalgae Chlorella vulgaris[J]. Fuel, 2018, 223: 12-19.
[31] Zhang Y, Kong X, Wang Z, et al. Optimization of enzymatic hydrolysis for effective lipid extraction from microalgae Scenedesmus sp[J]. Renewable Energy, 2018, 125: 1049-1057.
[32] Ren J, McCutcheon J R. Polyacrylonitrile supported thin film composite hollow fiber membranes for forward osmosis [J]. Desalination, 2015, 372: 67-74.
[33] Van der Bruggen B. Chemical modification of polyethersulfone nanofiltration membranes: a review [J]. Journal of Applied Polymer Science, 2009, 114(1): 630-642.
[34] Li G, Li X M, He T, et al. Cellulose triacetate forward osmosis membranes: preparation and characterization [J]. Desalination and Water Treatment, 2013, 51(13-15): 2656-2665.
[35] Ghanbari M, Emadzadeh D, Lau W J, et al. Minimizing structural parameter of thin film composite forward osmosis membranes using polysulfone/halloysite nanotubes as membrane substrates[J]. Desalination, 2016, 377: 152-162.
[36] Liu X, Ng H Y. Fabrication of layered silica–polysulfone mixed matrix substrate membrane for enhancing performance of thin-film composite forward osmosis membrane [J]. J Membr Sci, 2015, 481: 148-163.
[37] Salehi T M, Peyravi M, Jahanshahi M, et al. Impacts of zeolite nanoparticles on substrate properties of thin film nanocomposite membranes for engineered osmosis [J]. Journal of Nanoparticle Research, 2018, 20(4): 1-15.
[38] Munshi F M, Church J, McLean R, et al. Dewatering algae using an aquaporin-based polyethersulfone forward osmosis membrane[J]. Sep Purif Technol, 2018, 204: 154-161.
[39] Xu W, Chen Q, Ge Q. Recent advances in forward osmosis (FO) membrane: Chemical modifications on membranes for FO processes [J]. Desalination, 2017, 419: 101-116.
[40] Choi B G, Zhan M, Shin K, et al. Pilot-scale evaluation of FO-RO osmotic dilution process for treating wastewater from coal-fired power plant integrated with seawater desalination [J]. J Membr Sci, 2017, 540: 78-87.
[41] Akther N, Lin Y, Wang S, et al. In situ ultrathin silica layer formation on polyamide thin-film composite membrane surface for enhanced forward osmosis performances [J]. J Membr Sci, 2021, 620: 118876.
[42] Huang R, Liu Z, Yan B, et al. Layer-by-layer assembly of high negatively charged polycarbonate membranes with robust antifouling property for microalgae harvesting[J]. J Membr Sci, 2020, 595: 117488.
[43] Li M, Karanikola V, Zhang X, et al. A self-standing, support-free membrane for forward osmosis with no internal concentration polarization [J]. Environmental Science & Technology Letters, 2018, 5(5): 266-271.
[44] Liang S, Wu J, Wang C, et al. Ultra-high selectivity self-supporting symmetric membrane for forward osmosis separation[J]. Desalination, 2022, 534: 115796.
[45] Zou S, Gu Y, Xiao D, et al. The role of physical and chemical parameters on forward osmosis membrane fouling during algae separation [J]. J Membr Sci, 2011, 366(1-2): 356-362.
[46] Kim S, Paudel S, Seo G T. Forward osmosis membrane filtration for microalgae harvesting cultivated in sewage effluent [J]. Environmental Engineering Research, 2015, 20(1): 99-104.
[47] Qiu G, Law Y M, Das S, et al. Direct and complete phosphorus recovery from municipal wastewater using a hybrid microfiltration-forward osmosis membrane bioreactor process with seawater brine as draw solution [J]. Environmental Science & Technology, 2015, 49(10): 6156-6163.
[48] Sobczuk T M, González M J I, Grima E M, et al. Forward osmosis with waste glycerol for concentrating microalgae slurries [J]. Algal Research, 2015, 8: 168-173.
[49] Cui H, Zhang H, Yu M, et al. Performance evaluation of electric-responsive hydrogels as draw agent in forward osmosis desalination[J]. Desalination, 2018, 426: 118-126.
[50] Nguyen H T, Chen S S, Nguyen N C, et al. Exploring an innovative surfactant and phosphate-based draw solution for forward osmosis desalination[J]. J Membr Sci, 2015, 489: 212-219.
[51] Wang B, Wen X, Shen B, et al. A systematic evaluation on the performance and mechanism of surfactants as additive of draw solution in forward osmosis [J]. Desalination, 2018, 445: 170-180.
[52] Shibuya M, Yasukawa M, Takahashi T, et al. Effects of operating conditions and membrane structures on the performance of hollow fiber forward osmosis membranes in pressure assisted osmosis[J]. Desalination, 2015, 365: 381-388.
[53] Zou S, Wang Y N, Wicaksana F, et al. Direct microscopic observation of forward osmosis membrane fouling by microalgae: Critical flux and the role of operational conditions [J]. J Membr Sci, 2013, 436: 174-185.
[54] Blandin G, Rodriguez-Roda I, Comas J. Submerged osmotic processes: design and operation to mitigate mass transfer limitations [J]. Membranes, 2018, 8(3): 72.
[55] McCutcheon J R, Elimelech M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis [J]. J Membr Sci, 2006, 284(1-2): 237-247.
[56] Ramon G Z, Hoek E M V. Transport through composite membranes, part 2: Impacts of roughness on permeability and fouling [J]. J Membr Sci, 2013, 425: 141-148.
[57] Itliong J N, Al Rey C V, Moreno J L V, et al. Investigation of reverse ionic diffusion in forward-osmosis-aided dewatering of microalgae: A molecular dynamics study[J]. Bioresource Technology, 2019, 279: 181-188.
[58] Wen H, Wang J, Ngo H H, et al. Numerical and experimental investigation on the forward osmosis (FO) process for the operational conditions and spacer configuration optimization in microalgae dewatering [J]. Journal of Water Process Engineering, 2021, 40: 101922.
[59] Ryu H, Cho H, Park E, et al. Modeling of forward osmosis for microalgae harvesting[J]. J Membr Sci, 2022, 642: 119910.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号