不同孔径陶瓷膜硅烷改性及油水分离性能研究
作者:苟立民,段丽君,柯 威,陈献富,邱鸣慧,范益群
单位: 1.南京工业大学 化工学院 材料化学工程国家重点实验室,南京 211816; 2.南京膜材料产业技术研究院,南京 211800
关键词: 陶瓷膜; 疏水表面; 硅烷改性; 油水分离
出版年,卷(期):页码: 2024,44(1):16-26

摘要:
 具有低表面能的疏水陶瓷膜常用于含水油液分离,而渗透通量的提高是提升膜分离过程经济性的关键。本文通过有机硅烷接枝改性制备疏水陶瓷膜,研究硅烷改性对不同孔径陶瓷膜结构及油水分离性能的影响。以孔径为1 000 nm、100 nm、10 nm的三种陶瓷膜为研究对象,考察不同孔径陶瓷膜硅烷化改性前后膜表面微观形貌、润湿性及渗透阻力的变化,评价三种孔径疏水陶瓷膜在溶剂、酸碱等环境下的稳定性,并将三种孔径硅烷改性的陶瓷膜用于油包水乳液分离。结果表明,孔径越小的膜硅烷化改性后渗透阻力增幅越大,尤其是当孔径达到10 nm,改性前后渗透阻力相差近3倍;原膜孔径对改性膜润湿性影响不大,且均表现出良好的耐溶剂性、耐酸碱性。低压高流速的操作方式有利于提高改性膜通量;对于水含量1 000 μL/L 的W/O乳液,三种改性膜对水的截留率均超过93%,渗透液水含量低于70 μL/L,其中1 000 nm改性膜通量最高,达375 L/m2·h1,而10 nm膜更不易被污染;对于水含量10%(V/V)的W/O乳液,1000 nm改性膜污染非常严重,通量迅速下降为14.1 LL/m2·h1,而100 nm改性膜污染程度较小,通量较高。
Hydrophobic ceramic membranes with low surface energy are often used for containing-water oil separation, and the improvement of flux is the key to improve the economy of membrane separation process. In this study, hydrophobic ceramic membranes were prepared through organosilane modification. The impact of silane modification on the structure and oil-water separation performance of ceramic membranes with various pore sizes of 1000 nm, 100 nm, and 10 nm was investigated. We examined the changes in membrane surface micromorphology, wettability, and permeability resistance before and after modification for each pore size category. Additionally, we evaluated the stability of modified membranes in organic solvents, acid, and alkali. Subsequently, we assessed membrane performance in separating water-in-oil emulsions with varying water contents. The results show that the silane modification significantly increased the membrane permeability resistance for smaller pore sizes. Employing a low transmembrane pressure operation mode combined with high crossflow contributed to enhanced flux for modified membranes. Regarding W/O emulsion, when water content was 1000 mg/L, all three modified membranes achieved a water rejection exceeding 93%, while maintaining a permeate side water content below 70 mg/L. Among them, the 1μm modified membrane exhibited the highest flux at 375 L·m-2·h-1. However, when the volume fraction of water reached 10vol%, severe contamination occurred on the surface of the 1000 nm modified membrane resulting in significant drop in flux to only 14.1 L·m-2·h-1. Conversely, the 100 nm modified membrane showed less contamination and higher flux.
苟立民(1999-),男,四川省巴中市人,硕士研究生,研究方向为陶瓷膜材料及应用,E-mail:goulimin2020025293@163.com

参考文献:
 [1] 尹延梅, 吴秀丽, 柯永文, 等. 膜法液压油过滤净化技术研究[J]. 膜科学与技术, 2021, 41(5):139-145.
 
[2] Zhu X B, Dudchenko A, Gu X T, et al. Surfactant-stabilized oil separation from water using ultrafiltration and nanofiltration[J]. J Membr Sci, 2017, 529:159-169.
 
[3] Tummons E N, Tarabara V V, Chew J W, et al. Behavior of oil droplets at the membrane surface during crossflow microfiltration of oil–water emulsions[J]. J Membr Sci, 2016, 500:211-224.
 
[4] 李梅, 高能文, 范益群. 疏水陶瓷膜脱除油中水分的研究[J]. 膜科学与技术, 2012, 32(3):86-90.
 
[5] Zhu YY, Lu Y Q, Yu H, et al. Super-hydrophobic F-TiO2@PP membranes with nano-scale “coral”-like synapses for waste oil recovery[J]. Sep Purif Technol, 2021, 267:118579.
 
[6] Usman J, Othman M H D, Ismail A F, et al. An overview of superhydrophobic ceramic membrane surface modification for oil-water separation[J]. J Mater Res Technol, 2021, 12:643-667.
 
[7] Song J L, Huang S, Lu Y, et al. Self-driven one-step oil removal from oil spill on water via selective-wettability steel mesh[J]. Acs Appl Mater Interfaces, 2014, 6(22):19858-19865.
 
[8] 左继浩, 陈嘉慧, 文秀芳, 等. 用于分离油水乳液的先进材料[J]. 化学进展, 2019, 31(10):1440-1458.
 
[9] Chen X F, Dai C W, Zhang T Y, et al. Efficient construction of a robust PTFE/Al2O3 hydrophobic membrane for effective oil purification[J]. Chem Eng J, 2022, 435(3):139472.
 
[10] Yao X Y, Hou X B, Zhang R B. Flexible and mechanically robust polyimide foam membranes with adjustable structure for separation and recovery of oil-water emulsions and heavy oils[J]. Polymer, 2022,250:124889.
 
[11] 杨思民, 王建强, 刘富. 油水分离膜研究进展[J]. 膜科学与技术, 2019, 39(3):132-141.
 
[12] Ikhsan S N W, Yusof N , Aziz F, et al. Superwetting materials for hydrophilic-oleophobic membrane in oily wastewater treatment[J]. J Environ Manage, 2021, 290:112565.
 
[13] Gao N W, Li M, Jing W H, et al. Improving the filtration performance of ZrO2 membrane in non-polar organic solvents
 
by surface hydrophobic modification[J]. J Membr Sci, 2011, 375(1-2):276-283.
 
[14] 李秀秀, 魏逸彬, 谢子萱, 等. Al2O3和SiC微滤膜的疏水改性及其油固分离性能研究[J]. 化工学报, 2019, 70(7):2737-2747.
 
[15] He S J, Zhang Y Q, Bai Y L, et al. Gravity-driven and high flux super-hydrophobic/super-oleophilic poly(arylene ether nitrile) nanofibrous composite membranes for efficient water-in-oil emulsions separation in harsh environments[J]. Composites Part B, 2019, 177: 107439.
 
[16] Monash P, Pugazhenthi G. Effect of TiO2 addition on the fabrication of ceramic membrane supports: a study on the separation of oil droplets and bovine serum albumin (BSA) from its solution[J]. Desalination, 2011:279:104-114.
 
[17] Zhang D S, Abadikhah H, Wang J W, et al. Beta-SiAlON ceramic membranes modified with SiO2 nanoparticles with high rejection rate in oil-water emulsion separation[J]. Ceram Int, 2019, 45(4):4237-4242.
 
[18] Gao N W, Fan Y Q, Quan X J, et al. Modified ceramic membranes for low fouling separation of water-in-oil emulsions[J]. J Mater Sci, 2016, 51(13):6379-6388.
 
[19] George J K, Verma N. Super-hydrophobic/super-oleophilic carbon nanofiber-embedded resorcinol-formaldehyde composite membrane for effective separation of water-in-oil emulsion[J]. J Membr Sci, 2022, 654:120538.
 
[20] 张凯滨, 罗平, 柯威, 等. 陶瓷膜在透平油脱水中的应用研究[J].膜科学与技术, 2023, 43(3):116-122.
 
[21] Godin M, Williams P J, Tabard-Cossa V, et al. Surface stress, kinetics, and structure of alkanethiol self-assembled monolayers[J]. Langmuir, 2004, 20:7090-7096.
 
[22] Jadhav S A. Self-assembled monolayers (SAMs) of carboxylic acids: an overview[J]. Cent Eur J Chem, 2011,9(3):369-378.
 
[23] Gao W, Dickinson L, Grozinger C, et al. Self-assembled monolayers of alkylphosphonic acids on metal oxides[J]. Langmuir, 1996, 12:6429-6435.
 
[24] 郭寒雨, 刘四华, 薛白, 等. 膜蒸馏用PDMS/PVDF中空纤维疏水膜的研制[J]. 膜科学与技术, 2019, 39(4):63-68+75.
 
[25] Li Z, Wang X S, Bai H Y, et al. Advances in bioinspired superhydrophobic surfaces made from silicones: Fabrication and Application[J]. Polymer, 2023, 15(3):543.
 
[26] Ding D, Mao H Y, Chen X F, et al. Underwater superoleophobic-underoil superhydrophobic Janus ceramic membrane with its switchable separation in oil/water emulsions[J]. J Membr Sci, 2018, 565:303-310.
 
[27] Basak S, Barma S, Majumdar S, et al. Role of silane grafting in the development of a superhydrophobic clay-alumina composite membrane for separation of water in oil emulsion[J]. Ceram Int, 2022, 48(18):26638-26650.
 
[28] Lue S J, Chow J, Chien C F, et al. Cross-flow microfiltration of oily water using a ceramic membrane: flux decline and oil adsorption[J]. Sep Sci Technol, 2009, 44(14):3435-3454.
 
[29] Almojjly A, Johnson D, Hilal N. Investigations of the effect of pore size of ceramic membranes on the pilot-scale removal of oil from oil-water emulsion[J]. J Water Process Eng, 2019, 31:100868.
 
[30] 张婷, 李雪, 熊峰, 等. 介孔陶瓷膜表面接枝氨基硅烷的孔径调节研究[J]. 膜科学与技术, 2016, 36(1):45-49+54.
 
[31] 柯威, 高能文, 李梅, 等. 疏水性Al2O3膜表面的化学稳定性[J]. 南京工业大学学报(自然科学版), 2010, 32(6):45-49.
 
[32] Schatzberg P. Solubilities of water in several normal alkanes from C7 to C16[J]. J Phys Chem, 1963, 67, 776-779.
 
[33] Wei Y B, Xie Z X, Qi H. Superhydrophobic-superoleophilic SiC membranes with micro-nano hierarchical structures for high-efficient water-in-oil emulsion separation[J]. J Membr Sci, 2020, 601:117842.
 
[34] Usman J, Othman M H D, Ismail A F, et al. Impact of organosilanes modifiedsuperhydrophobic-superoleophilickaolin ceramic membrane on efficiency of oil recovery from produced water[J]. J Chem Technol Biotechnol, 2020, 95(12):3300-3315.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号