MXene@PEI/IL复合膜的构建及气体分离性能研究
作者:骆文佳,李飞,张析,李健
单位: 1. 西北矿冶研究院 精细化工所 白银 730900; 2. 西北师范大学 化学化工学院 兰州730070
关键词: MXene纳米片;CO2捕获;亲CO2;IL
出版年,卷(期):页码: 2024,44(1):37-44

摘要:
 膜分离技术具有绿色高效环保等优点成为气体分离领域研究的热点。本研究先将MXene纳米片与PEI相结合,之后在MXene@PEI膜的上表面旋涂不同负载量的IL,形成高性能的MXene@PEI/IL复合膜。通过SEM、TEM、AFM、FT-IR、XRD和TGA测试研究了MXene纳米片和MXene@PEI/IL复合膜的形貌、内部结构和热稳定性。结果表明,PEI的正电荷和MXene的负电荷通过静电作用增强了膜的相容性。此外,通过系统研究IL的负载量、温度和操作时间对MXene@PEI/IL复合膜分离性能的影响。在25 °C、0.1MPa条件下MXene@PEI/IL复合膜分离CO2/N2时的最大CO2渗透量为481.78 GPU,分离CO2/CH4时的最大CO2渗透量为333.21 GPU。同时,MXene@PEI/IL复合膜对CO2/N2(35.30)和CO2/CH4(32.13)均表现出优异的选择性。本研究中制备的膜还显示出卓越的持久性和巨大的CO2分离潜力。
 Membrane separation technology has the advantages of green, high efficiency and environmental protection, and has become a research hotspot in the field of gas separation. In this study, MXene nanosheets were first combined with PEI, and then different loads of IL were spin coated on the upper surface of MXene@PEI membrane to form a high-performance MXene@PEI/IL composite membrane. The morphology, internal structure and thermal stability of MXene nanosheets and MXene@PEI/IL composite films were investigated by SEM, TEM, AFM, FT-IR, XRD and TGA. The results show that the positive charge of PEI and the negative charge of MXene enhance the film compatibility through electrostatic interaction. In addition, the effects of IL loading, temperature and operation time on the separation performance of MXene@PEI/IL composite membranes were systematically investigated. At 25 °C and 1bar, the maximum CO2 permeance of MXene@PEI/IL composite membrane for CO2/N2 separation was 481.78 GPU, and that for CO2/CH4 separation was 333.21 GPU. At the same time, MXene@PEI/IL composite membrane showed excellent selectivity for CO2/N2 (35.30) and CO2/CH4 (32.13). The membranes prepared in this study also show excellent durability and great potential for CO2 separation.
骆文佳(1994-),男,甘肃定西人,硕士,助理工程师,主要研究方向为气体分离膜材料的制备及应用

参考文献:
 [1] Ding X, Liu Z, Zhang Y, et al. Binary solvent regulated architecture of ultra-microporous hydrogen-bonded organic frameworks with tunable polarization for highly-selective gas separation[J]. Angewandte Chemie International Edition, 2022, 61(13): e202116483.
[2] Goh S H, Lau H S, Yong W F. Metal-organic frameworks (MOFs)-based mixed matrix membranes (MMMs) for gas separation: a review on advanced materials in harsh environmental applications[J]. Small, 2022, 18(20): e2107536.
[3] Tanvidkar P, Appari S, Kuncharam B V R. A review of techniques to improve performance of metal organic framework (MOF) based mixed matrix membranes for CO2/CH4 separation[J]. Reviews in Environmental Science and Bio/Technology, 2022,21: 539–569.
[4] Comesaña-Gándara B, Chen J, Bezzu C G, et al. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity[J]. Energy & Environmental Science, 2019, 12(9): 2733-2740.
[5] Kamble A R, Patel C M, Murthy Z V P. A review on the recent advances in mixed matrix membranes for gas separation processes[J]. Renewable and Sustainable Energy Reviews, 2021, 145: 111062.
[6] Ying W, Hou Q, Chen D, Guo Y, Li Z, Zhang J, Yan Y, Peng X, Electrical field facilitates selective transport of CO2 through a laminated MoS2 supported ionic liquid membrane[J]. Journal of Materials Chemistry A, 2019, 7: 10041-10046.
[7] Ying W, Zhou K, Hou Q, Chen D, Guo Y, Zhang J, Yan Y, Xu Z, Peng X, Selectively tuning gas transport through ionic liquid filled graphene oxide nanoslits using an electric field[J]. Journal of Materials Chemistry A, 2019, 9: 15062-15067.
[8] Xu P, Zhang X C, et al. Prominently improved CO2/N2 separation efficiency by ultrathin-ionic-liquid-covered MXene membrane[J], Separation and Purification Technology, 2023, 311:123296.
[9] Tang R, Xiong S, Gong D, et al. Ti3C2 2D MXene: recent progress and perspectives in photocatalysis[J]. ACS Appl Mater Interfaces, 2020, 12(51): 56663-56680.
[10] Lin H, Gong K, Hykys P, Chen D, Ying W, Sofer Z, Yan Y, Li Z, Peng X, Nanoconfined deep eutectic solvent in laminated MXene for efficient CO2 separation[J], Chemical Engineering Journal, 405 (2021) 126961.
[11] Ding L, Wei Y, Li L, et al. MXene molecular sieving membranes for highly efficient gas separation[J]. Nat Commun, 2018, 9(1): 155.
[12] Gong K, Zhou K, Qian X, et al. MXene as emerging nanofillers for high-performance polymer composites: A review[J]. Composites Part B: Engineering, 2021, 217: 108867.
[13] Ma Y, Gao F, Pan R, et al. Separation membranes with long-term stability and high flux prepared through intramembrane dopamine-based nanoparticle assembly[J]. Journal of Membrane Science, 2022, 654: 120563.
[14] Zeng S, Zhang X, Bai L, et al. Ionic-liquid-based CO2 capture systems: structure, interaction and process[J]. Chem Rev, 2017, 117(14): 9625-9673.
[15] Jia Y, Shi F, Li H, Yan Z, Xu J, Gao J, Wu X, Li Y, Wang J, Zhang B, Facile Ionization of the Nanochannels of Lamellar Membranes for Stable Ionic Liquid Immobilization and Efficient CO2 Separation, ACS Nano, 16 (2022) 14379-14389.
[16] Ahmed Z, Rehman F, Ali U, et al. Recent advances in MXene-based separation membranes[J]. Chembioeng Reviews, 2021, 8(2): 110-120.
[17] Wang Y, Zhou Y, Zhang X, et al. SPEEK membranes by incorporation of NaY zeolite for CO2/N2 separation[J]. Separation and Purification Technology, 2021, 275: 119189.
[18] 孙成珍, 罗东, 白博峰. 二维材料气体分离膜及其应用研究进展[J]. 科学通报: 1-19.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号