蒸汽诱导相分离法制备PVDF多孔膜及其膜蒸馏性能研究
作者:马忠,陈晓蓉,彭艳,蒋帅,刘鑫如,周守勇,李梅生,赵宜江
单位: 淮阴师范学院 化学化工学院,江苏省环境功能材料工程研究中心,淮安 223300
关键词: 膜蒸馏;聚偏氟乙烯;蒸汽诱导相分离;膜结构;膜润湿
出版年,卷(期):页码: 2024,44(1):56-62

摘要:
 制备具有优异抗润湿性能的膜蒸馏(MD)用膜是膜分离领域的一个挑战。本文以聚偏氟乙烯(PVDF)为膜材料,N,N-二甲基甲酰胺(DMF)为溶剂,1,2-丙二醇为添加剂,采用蒸汽诱导相分离法(VIPS)制备了高疏水性PVDF多孔膜。考察了暴露时间、相对湿度以及蒸汽温度等工艺参数对PVDF多孔膜结构与性能的影响。结果表明,当暴露时间为1 min,相对湿度为85%,蒸汽温度为60℃时,PVDF多孔膜表面呈现出微/纳米分级结构,静态水接触角为141°,孔隙率约为78%。在使用含有表面活性剂的盐溶液作为进料液的DCMD实验中,所制备的PVDF疏水膜表现出20 L m-2 h-1的稳定水通量和接近100%的盐截留率。
 Preparing membranes with excellent anti-wetting properties for membrane distillation (MD) is a challenge in the field of membrane separation. This article uses polyvinylidene fluoride (PVDF) as the membrane material, N,N-dimethylformamide (DMF) as the solvent, and 1,2-propanediol as the additive to prepare highly hydrophobic PVDF porous membranes through vapor-induced phase separation (VIPS) method. The effects of process parameters such as exposure time, relative humidity (RH), and vapor temperature on the structure and performance of PVDF porous membranes were studied. The results showed that when the exposure time was 1 minute, the relative humidity was 85%, and the vapor temperature was 60℃, the surface of PVDF porous membrane exhibited a micro/nano hierarchical structure, with a static water contact angle of 143° and a porosity of about 78%. In the MD experiment using high salinity water containing surfactants as the feed, the prepared PVDF hydrophobic membrane exhibited a stable water flux of 20 L m-2 h-1 and a salt rejection rate of nearly 100%.
马忠(1989-),男,江苏淮安人,博士,讲师,主要从事膜材料与过程研究,E-mail: mazhong@hytc.edu.cn

参考文献:
 [1] Alkhudhiri A,Darwish N,Hilal N. Membrane distillation: A comprehensive review[J]. Desalination,2012,287:2–18.
[2] El-Bourawi M S,Ding Z,Ma R,et al. A framework for better understanding membrane distillation separation process[J]. J Membr Sci,2006,285(1-2):4–29.
[3] Xie S,Wen J,Pang Z,et al. Research progress of membrane fouling and wetting in membrane distillation process for desalination[J]. Chemical Industry and Engineering Progress,2021,40(7):3942–3956.
[4] Tijing L D,Woo Y C,Choi J S,et al. Fouling and its control in membrane distillation—A review[J]. J Membr Sci,2015,475:215–244.
[5] Deshmukh A,Boo C,Karanikola V,et al. Membrane distillation at the water-energy nexus: limits, opportunities, and challenges[J]. Energy Environ Sci,2018,11:1177–1196.
[6] Warsinger D M,Swaminathan J,Guillen-Burrieza E,et al. Scaling and fouling in membrane distillation for desalination applications: A review[J]. Desalination,2015,356:294–313.
[7] Razmjou A,Arifin E,Dong G,et al. Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation[J]. J Membr Sci,2012,415–416:850–863.
[8] Horseman T,Yin Y,Christie K S S,et al. Wetting, Scaling, and Fouling in Membrane Distillation: State-of-the-Art Insights on Fundamental Mechanisms and Mitigation Strategies[J]. ACS EST Eng,2021,1(1):117–140.
[9] Zheng R,Chen Y,Wang J,et al. Preparation of omniphobic PVDF membrane with hierarchical structure for treating saline oily wastewater using direct contact membrane distillation[J]. J Membr Sci,2018,555:197–205.
[10] Wang W,Du X,Vahabi H,et al. Trade-off in membrane distillation with monolithic omniphobic membranes[J]. Nat Commun,2019,10:3220.
[11] Chiao Y H,Cao Y,Ang M B M Y,et al. Application of superomniphobic electrospun membrane for treatment of real produced water through membrane distillation[J]. Desalination,2022,528:115602.
[12] Jiang X,Shao Y,Li J,et al. Bioinspired hybrid micro/nanostructure composited membrane with intensified mass transfer and antifouling for high saline water membrane distillation[J]. ACS Nano,2020,14:17376–17386.
[13] Lu K J,Chen Y,Chung T S. Design of omniphobic interfaces for membrane distillation – A review[J]. Water Res,2019,162:64–77.
[14] 韩桂芳,谭宏伟,陈越,等. 聚四氟乙烯中空纤维膜的制备、改性及应用研究进展[J]. 有机氟工业,2021,3:43–47.
[15] Feng J,Fan Y,Qi H,et al. Co-sintering synthesis of tubular bilayer α-alumina membrane[J]. J Membr Sci,2007,288(1-2):20–27.
[16] Liu F,Hashim N A,Liu Y,et al. Progress in the production and modification of PVDF membranes[J]. J Membr Sci,2011,375(1–2):1–27.
[17] Jung J T,Kim J F,Wang H H,et al. Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS)[J]. J Membr Sci,2016,514:250–263.
[18] Li C L,Wang D M,Deratani A,et al. Insight into the preparation of poly(vinylidene fluoride) membranes by vapor-induced phase separation[J]. J Membr Sci,2010,361(1-2):154–166.
[19] Zsigmondy R,Bachmann W. Über neue Filter[J]. Z Für Anorg Und Allg Chem,1918,103:119–128.
[20] Menut P,Su Y S,Chinpa W,et al. A top surface liquid layer during membrane formation using vapor-induced phase separation (VIPS)—Evidence and mechanism of formation[J]. J Membr Sci,2008,310(1):278–288.
[21] Bhushan B,Jung Y C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction[J]. Prog Mater Sci,2011,56(1):1-108.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号