疏水陶瓷膜的改性与应用研究进展
作者:吴至欣,朱涛涛,姬文兰,徐楠,年佩,魏逸彬
单位: 省部共建煤炭高效利用与绿色化工国家重点实验室,宁夏大学 化学化工学院,银川 750021
关键词: 陶瓷膜;膜改性;疏水膜;接触角;表面能
出版年,卷(期):页码: 2024,44(1):168-178

摘要:
 疏水陶瓷膜具有优异的抗水润湿性能,在油水分离、膜蒸馏、膜乳化等膜过程中具有广阔的应用前景。本文简要介绍了疏水陶瓷膜的定义,综述了近年来陶瓷膜在疏水改性方面的研究进展,总结了疏水陶瓷膜在不同膜过程的应用探索,最后展望了疏水陶瓷膜在超疏水改性及过程应用等方面所面临的机遇与挑战。
 Hydrophobic ceramic membranes show excellent resistance to water wetting and have broad application prospects in membrane processes such as oil-water separation, membrane distillation and membrane emulsification. This paper briefly introduces the definition of hydrophobic ceramic membrane, reviews the recent research progress on hydrophobic ceramic membrane modification, summarizes the application exploration of hydrophobic ceramic membrane in different membrane processes, and finally outlooks to the opportunities and challenges faced by hydrophobic ceramic membrane modification and application.
吴至欣(1999-),男,浙江庆元人,硕士研究生,研究方向,主要从事疏水陶瓷膜的制备及性能研究,E-mail:1517711218@qq.com

参考文献:
 [1] HIMMA N F, PRASETYA N, ANISAH S, et al. Superhydrophobic membrane: progress in preparation and its separation properties [J]. Rev. Chem. Eng., 2019, 35(2): 211-238.
[2] CHEN H, ZUO Z, TIAN Q, et al. Waste to treasure: A superwetting fiber membrane from waste PET plastic for water-in-oil emulsion separation [J]. J. Cleaner Prod., 2023, 396: 136502.
[3] CHENG J, HUANG Q, HUANG Y, et al. Pore structure design of NFES PTFE membrane for membrane emulsification [J]. J. Membr. Sci., 2020, 611: 118365.
[4] LV Y, YU X, TU S-T, et al. Wetting of polypropylene hollow fiber membrane contactors [J]. J. Membr. Sci., 2010, 362(1-2): 444-452.
[5] OTITOJU T A, AHMAD A L, OOI B S. Polyvinylidene fluoride (PVDF) membrane for oil rejection from oily wastewater: A performance review [J]. J Water Process Eng., 2016, 14: 41-59.
[6] LU J, YU Y, ZHOU J, et al. FAS grafted superhydrophobic ceramic membrane [J]. Appl. Surf. Sci., 2009, 255(22): 9092-9099.
[7] USMAN J, OTHMAN M H D, ISMAIL A F, et al. An overview of superhydrophobic ceramic membrane surface modification for oil-water separation [J]. J. Mater. Res. Technol., 2021, 12: 643-667.
[8] 魏逸彬, 朱涛涛, 姬文兰, 等. 固体废弃物助烧的多孔SiC陶瓷膜支撑体研究进展 [J]. 硅酸盐学报, 2023, 51(12): 3215-3226.
[9] WANG Y, TANG J, LOW Z-X, et al. Multiscale super-amphiphobic ceramic membrane for oil aerosol removal [J]. J. Membr. Sci., 2022, 642: 119996.
[10] 范益群, 邢卫红. 陶瓷膜表面性质研究进展 [J]. 膜科学与技术, 2013, 33(05): 1-7.
[11] ARUMUGHAM T, KALEEKKAL N J, GOPAL S, et al. Recent developments in porous ceramic membranes for wastewater treatment and desalination: A review [J]. J. Environ. Manage., 2021, 293: 112925.
[12] SU C, XU Y, ZHANG W, et al. Porous ceramic membrane with superhydrophobic and superoleophilic surface for reclaiming oil from oily water [J]. Appl. Surf. Sci., 2012, 258(7): 2319-2323.
[13] 阎安, 郭寒雨, 史乐, 等. 膜蒸馏脱盐用超疏水复合膜的研制 [J]. 膜科学与技术, 2021, 41(04): 8-14.
[14] KUJAWA J, KUJAWSKI W, CYGANIUK A, et al. Upgrading of zirconia membrane performance in removal of hazardous VOCs from water by surface functionalization [J]. Chem. Eng. J., 2019, 374: 155-169.
[15] CAI Y, SHI S Q, FANG Z, et al. Design, Development, and Outlook of Superwettability Membranes in Oil/Water Emulsions Separation [J]. Adv. Mater. Interfaces, 2021, 8(18): 2100799.
[16] WEI Y, QI H, GONG X, et al. Specially Wettable Membranes for Oil–Water Separation [J]. Adv. Mater. Interfaces, 2018, 5(23): 1800576.
[17] CHEN T, DUAN M, FANG S. Fabrication of novel superhydrophilic and underwater superoleophobic hierarchically structured ceramic membrane and its separation performance of oily wastewater [J]. Ceram. Int., 2016, 42(7): 8604-8612.
[18] CUI Q, SHANG Y, FEI Z, et al. Hydrophobic–Hydrophilic Janus Ceramic Membrane for Enhancing the Waste Heat Recovery from the Stripped Gas in the Carbon Capture Process [J]. ACS Sustainable Chem. Eng., 2022, 10(12): 3817-3828.
[19] YI T. III. An essay on the cohesion of fluids [J]. Philos. Trans. R. Soc. London, 1805, 95: 65-87.
[20] WENZEL R N. Resistance of Solid Surfaces to Wetting by Water [J]. Ind. Eng. Chem., 1936, 28(8): 988-994.
[21] CASSIE A B D, BAXTER S. Wettability of porous surfaces [J]. Trans. Faraday Soc., 1944, 40: 546.
[22] ZHANG N, YANG X, WANG Y, et al. A review on oil/water emulsion separation membrane material [J]. J. Environ. Chem. Eng., 2022, 10(2): 107257.
[23] 吕晓龙. 疏水膜的污染、润湿与干燥探讨 [J]. 膜科学与技术, 2020, 40(01): 196-203.
[24] 天津工业大学, 浙江津膜环境科技有限公司, 上海凯鑫分离技术股份有限公司, 等. 多孔疏水膜的疏水性能测试方法 [J]. 2022, GB/T 42270-2022: 16.
[25] JAMALLUDIN M R, HUBADILLAH S K, HARUN Z, et al. Facile fabrication of superhydrophobic and superoleophilic green ceramic hollow fiber membrane derived from waste sugarcane bagasse ash for oil/water separation [J]. Arabian J. Chem., 2020, 13(1): 3558-3570.
[26] YANG Y, LIU Q, WANG H, et al. Superhydrophobic modification of ceramic membranes for vacuum membrane distillation [J]. Chin. J. Chem. Eng., 2017, 25(10): 1395-1401.
[27] FU H, LI Z, ZHANG Y, et al. Preparation, characterization and properties study of a superhydrophobic ceramic membrane based on fly ash [J]. Ceram. Int., 2022, 48(8): 11573-11587.
[28] HAN H H, RYU S H, NAKAO S-I, et al. Gas permeation properties and preparation of porous ceramic membrane by CVD method using siloxane compounds [J]. J. Membr. Sci., 2013, 431: 72-78.
[29] KHEMAKHEM M, KHEMAKHEM S, BEN AMAR R. Emulsion separation using hydrophobic grafted ceramic membranes by [J]. Colloids Surf., A, 2013, 436: 402-407.
[30] KOONAPHAPDEELERT S, LI K. Preparation and characterization of hydrophobic ceramic hollow fibre membrane [J]. J. Membr. Sci., 2007, 291(1-2): 70-76.
[31] ZHOU W, ZHANG L, WU P, et al. An effective method for improving the permeation flux of a ceramic membrane: Single-matrix spherical ceramic membrane [J]. J. Hazard. Mater., 2020, 400: 123183.
[32] WEN Q, GUO Z. Recent Advances in the Fabrication of Superhydrophobic Surfaces [J]. Chem. Lett., 2016, 45(10): 1134-1149.
[33] AHMAD N A, LEO C P, AHMAD A L, et al. Membranes with Great Hydrophobicity: A Review on Preparation and Characterization [J]. Sep. Purif. Rev., 2014, 44(2): 109-134.
[34] LI L, MA G, PAN Z, et al. Research Progress in Gas Separation Using Hollow Fiber Membrane Contactors [J]. Membranes, 2020, 10(12): 380.
[35] WANG Y, JIANG Q, JING W, et al. Pore structure and surface property design of silicon carbide membrane for water-in-oil emulsification [J]. J. Membr. Sci., 2022, 648: 120347.
[36] GUO Y, QI W, FU K, et al. Permeability and Stability of Hydrophobic Tubular Ceramic Membrane Contactor for CO2 Desorption from MEA Solution [J]. Membranes, 2021, 12(1): 8.
[37] GAO N, KE W, FAN Y, et al. Evaluation of the oleophilicity of different alkoxysilane modified ceramic membranes through wetting dynamic measurements [J]. Appl. Surf. Sci., 2013, 283: 863-870.
[38] HUBADILLAH S K, TAI Z S, OTHMAN M H D, et al. Hydrophobic ceramic membrane for membrane distillation: A mini review on preparation, characterization, and applications [J]. Sep. Purif. Technol., 2019, 217: 71-84.
[39] WANG B, LIANG W, GUO Z, et al. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature [J]. Chem. Soc. Rev., 2015, 44(1): 336-361.
[40] WANG S, JIANG L. Definition of Superhydrophobic States [J]. Adv. Mater., 2007, 19(21): 3423-3424.
[41] 王鹏伟, 刘明杰, 江雷. 仿生多尺度超浸润界面材料 [J]. 物理学报, 2016, 65(18): 61-83.
[42] ZHANG T, XIAO C, ZHAO J, et al. One-step facile fabrication of PVDF/graphene composite nanofibrous membrane with enhanced oil affinity for highly efficient gravity-driven emulsified oil/water separation and selective oil absorption [J]. Sep. Purif. Technol., 2021, 254: 117576.
[43] GUO D, HOU K, XU S, et al. Superhydrophobic–superoleophilic stainless steel meshes by spray-coating of a POSS hybrid acrylic polymer for oil–water separation [J]. J. Mater. Sci., 2018, 53(9): 6403-6413.
[44] LIU J, ZHU X, ZHANG H, et al. Superhydrophobic coating on quartz sand filter media for oily wastewater filtration [J]. Colloids Surf., A, 2018, 553: 509-514.
[45] ZHANG W, LU X, XIN Z, et al. A self-cleaning polybenzoxazine/TiO2 surface with superhydrophobicity and superoleophilicity for oil/water separation [J]. Nanoscale, 2015, 7(46): 19476-19483.
[46] DONG Y, MA L, TANG C Y, et al. Stable Superhydrophobic Ceramic-Based Carbon Nanotube Composite Desalination Membranes [J]. Nano Lett., 2018, 18(9): 5514-5521.
[47] LIU W, YANG G, HUANG M, et al. Ultrarobust and Biomimetic Hierarchically Macroporous Ceramic Membrane for Oil–Water Separation Templated by Emulsion-Assisted Self-Assembly Method [J]. ACS Appl. Mater. Interfaces, 2020, 12(31): 35555-35562.
[48] LI S, FANG Y, CHENG L, et al. Porous silicon carbide ceramics with directional pore structures by CVI combined with sacrificial template method [J]. Ceram. Int., 2023, 49(5): 8331-8338.
[49] WEI Y, XIE Z, QI H. Superhydrophobic-superoleophilic SiC membranes with micro-nano hierarchical structures for high-efficient water-in-oil emulsion separation [J]. J. Membr. Sci., 2020, 601: 117842.
[50] WANG Y, WEI J, WANG Y, et al. Insights into boosting SiC membrane superhydrophobic-superoleophilic property and oil purification performance by hierarchical structure control [J]. J. Environ. Chem. Eng., 2023, 11(3): 109991.
[51] REN C, CHEN W, CHEN C, et al. Gravity-Driven Separation of Oil/Water Mixture by Porous Ceramic Membranes with Desired Surface Wettability [J]. Materials, 2021, 14(2): 457.
[52] DING D, MAO H, CHEN X, et al. Underwater superoleophobic-underoil superhydrophobic Janus ceramic membrane with its switchable separation in oil/water emulsions [J]. J. Membr. Sci., 2018, 565: 303-310.
[53] ZSIRAI T, AL-JAML A K, QIBLAWEY H, et al. Ceramic membrane filtration of produced water: Impact of membrane module [J]. Sep. Purif. Technol., 2016, 165: 214-221.
[54] GAO N, FAN Y, QUAN X, et al. Modified ceramic membranes for low fouling separation of water-in-oil emulsions [J]. J. Mater. Sci., 2016, 51(13): 6379-6388.
[55] WEI J, NIAN P, WANG Y, et al. Preparation of superhydrophobic-superoleophilic ZnO nanoflower@SiC composite ceramic membranes for water-in-oil emulsion separation [J]. Sep. Purif. Technol., 2022, 292: 121002.
[56] WANG J-W, ABADIKHAH H, YIN L-J, et al. Multilevel hierarchical super-hydrophobic ceramic membrane for water-in-oil emulsion separation [J]. Process Saf. Environ. Prot., 2023, 175: 361-368.
[57] GAO N W, XU Z K. Ceramic membranes with mussel-inspired and nanostructured coatings for water-in-oil emulsions separation [J]. Sep. Purif. Technol., 2019, 212: 737-746.
[58] KUJAWA J, KUJAWSKI W, CERNEAUX S, et al. Zirconium dioxide membranes decorated by silanes based-modifiers for membrane distillation – Material chemistry approach [J]. J. Membr. Sci., 2020, 596: 117597.
[59] 许钊娜, 孙春意, 董应超. 陶瓷基双疏膜的制备及其氨氮废水处理性能 [J]. 膜科学与技术: 1-11.
[60] QUAN J, YU J, WANG Y, et al. Oriented shish-kebab like ultra-high molecular weight polyethylene membrane for direct contact membrane distillation [J]. Sep. Purif. Technol., 2022, 290: 120847.
[61] EYKENS L, DE SITTER K, DOTREMONT C, et al. How To Optimize the Membrane Properties for Membrane Distillation: A Review [J]. Ind. Eng. Chem. Res., 2016, 55(35): 9333-9343.
[62] DAI X, WEI Q, WANG Y, et al. A novel strategy to enhance the desalination stability of FAS (fluoroalkylsilane)-modified ceramic membranes via constructing a porous SiO2@PDMS (polydimethylsiloxane) protective layer on their top [J]. Chem. Eng. J., 2022, 435: 134757.
[63] PAGLIERO M, BOTTINO A, COMITE A, et al. Silanization of tubular ceramic membranes for application in membrane distillation [J]. J. Membr. Sci., 2020, 601: 117911.
[64] DONG S, YUN Y, WANG M, et al. Superhydrophobic alumina hollow ceramic membrane modified by TiO2 nanorod array for vacuum membrane distillation [J]. J. Taiwan Inst. Chem. Eng., 2020, 117: 56-62.
[65] FU H, XUE K, LI Z, et al. Study on the performance of CO2 capture from flue gas with ceramic and PTFE membrane contactors [J]. Energy, 2023, 263: 125677.
[66] QIU M, KONG X, FU K, et al. Optimization of microstructure and geometry of hydrophobic ceramic membrane for SO2 absorption from ship exhaust [J]. AlChE J., 2018, 65(1): 409-420.
[67] ABDULHAMEED M A, OTHMAN M H D, ISMAIL A F, et al. Carbon dioxide capture using a superhydrophobic ceramic hollow fibre membrane for gas-liquid contacting process [J]. J. Cleaner Prod., 2017, 140: 1731-1738.
[68] FU H, XUE K, YANG J, et al. CO2 capture based on Al2O3 ceramic membrane with hydrophobic modification [J]. J. Eur. Ceram. Soc., 2023, 43(8): 3427-3436.
[69] YU X, AN L, YANG J, et al. CO2 capture using a superhydrophobic ceramic membrane contactor [J]. J. Membr. Sci., 2015, 496: 1-12.
[70] MENG H, BI J, LIU J, et al. MnO2-Functionalized Hydrophobic Ceramic Membrane for Sulfite Oxidation [J]. ACS Appl. Nano Mater., 2023, 6(8): 6772-6783.
[71] DAI M, LIU J, JI Z, et al. Fabrication of superhydrophobic & catalytic bifunctional MnO2 @ Al2O3 composite ceramic membrane for oxidation of desulfurization waste solution [J]. Colloids Surf., A, 2022, 635: 128067.
[72] ZHAO M, LIU Y, ZHANG J, et al. Janus ceramic membranes with asymmetric wettability for high-efficient microbubble aeration [J]. J. Membr. Sci., 2023, 671: 121418.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号