应用光学相干断层成像技术探索膜蒸馏过程的研究进展
作者:刘杰,程良红,徐期勇,李炜怡
单位: 1.北京大学 深圳研究生院,环境与能源学院,深圳 518055;2. 南方科技大学 环境科学与工程学院,深圳 518000;3. 广东南天司法鉴定所,深圳 518016
关键词: 膜蒸馏;光学相干断层成像;原位表征;膜污染;结垢和润湿
出版年,卷(期):页码: 2024,44(1):179-187

摘要:
 膜污染、结垢和润湿现象的发生是制约膜蒸馏(MD)实现规模化工业应用的主要阻碍。深刻揭示这些现象的演化机制在很大程度上需要推动新型表征方法的探索。光学相干断层成像技术( OCT)是一种新兴的、能够对各种膜分离过程进行非侵入性表征的技术。本综述在简要介绍OCT表征相关原理的基础上,旨在阐明如何利用基于OCT的技术对MD过程进行定性(例如污染层的可视化)和定量(例如污染层的原位结构测量)分析。除了评价应用OCT研究MD过程的优缺点外,本综述也为在水资源再生以及其他分离领域中设计高效的MD系统提供了实用和理论依据。
Applications of membrane distillation (MD) are hindered primarily owing to the occurrence of membrane fouling, scaling, and wetting; revealing the mechanisms underlying these negative phenomena is strongly dependent on the exploration of novel characterization methods.  Optical coherent tomography (OCT) is an emerging technique that enables a non-intrusive characterization for various membrane processes.  When introducing the relevant principle of OCT, this review is aimed at elucidating how the OCT-based characterization was exploited to analyze MD processes in both qualitative (e.g., visualization of the fouling layer) and quantitative (e.g., in-situ structural measurement of the fouling layer) ways.  In addition to assessing the pros and cons of applying OCT to the studies on MD, practical and theoretical implications are discussed to shed light on the design of high efficiency MD systems for water reclamation and other separations. 
刘杰(1989-),男,湖南邵东人, 高级工程师,研究方向为膜分离技术、膜法废水处理、环境损害司法鉴定

参考文献:
 [1] Smolders K ,Franken ACM.  Terminology for membrane distillation [J]. Desalination, 1989, 72(3): 249-262.
[2] Alkhudhiri A, Darwish N, Hilal N. Membrane distillation: A comprehensive review [J]. Desalination, 2012, 287: 2-18.
[3] Sim S T V, Chong T H, Krantz W B, et al. Monitoring of colloidal fouling and its associated metastability using Ultrasonic Time Domain Reflectometry [J]. J Membr Sci, 2012, 401-402: 241-253.
[4] Cen J, Vukas M, Barton G, et al. Real time fouling monitoring with Electrical Impedance Spectroscopy [J]. J Membr Sci, 2015, 484: 133-139.
[5]Li H A G F, Coster H.G.L, Vigenswaran S. Direct observation of particle deposition on the membrane surface during crossflow microfiltration [J]. J Membr Sci, 1998, 83-97.
[6] Chan R, Chen V. Characterization of protein fouling on membranes: opportunities and challenges [J]. J Membr Sci, 2004, 242(1-2): 169-188.
[7] Fercher A F. Optical coherence tomography - development, principles, applications [J]. Z Med Phys 2010, 20(4): 251-276.
[8] Derlon N, Peter-Varbanets M, Scheidegger A, et al. Predation influences the structure of biofilm developed on ultrafiltration membranes [J]. Water Res, 2012, 46(10): 3323-3333.
[9] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography [J]. Science, 1991, 254(5035): 1178.
[10] Gao Y, Haavisto S, Tang C Y, et al. Characterization of fluid dynamics in spacer-filled channels for membrane filtration using Doppler optical coherence tomography [J]. J Membr Sci, 2013, 448: 198-208.
[11] Gao Y, Haavisto S, Li W, et al. Novel approach to characterizing the growth of a fouling layer during membrane filtration via optical coherence tomography [J]. Environ Sci Technol, 2014, 48(24): 14273-14281.
[12] Li W, Liu X, Wang Y N, et al. Analyzing the Evolution of Membrane Fouling via a Novel Method Based on 3D Optical Coherence Tomography Imaging [J]. Environ Sci Technol, 2016, 50(13): 6930-6939.
[13] Liu X, Chen G, Tu G, et al. Membrane fouling by clay suspensions during NF-like forward osmosis: Characterization via optical coherence tomography [J]. J Membr Sci, 2020, 602:117965.
[14] Liu X, Li W, Chong T H, et al. Effects of spacer orientations on the cake formation during membrane fouling: Quantitative analysis based on 3D OCT imaging [J]. Water Res, 2017, 110: 1-14.
[15] Liu X, Du D, Tu G, et al. Unraveling effects of Dean vortices on membrane fouling in a sinusoidally curved channel [J]. J Membr Sci, 2020, 603:118008.
[16] Sim L N, Chong T H, Taheri A H, et al. A review of fouling indices and monitoring techniques for reverse osmosis [J]. Desalination, 2018, 434: 169-188.
[17] Fortunato L, Jang Y, Lee J G, et al. Fouling development in direct contact membrane distillation: Non-invasive monitoring and destructive analysis [J]. Water Res, 2018, 132: 34-41.
[18] Guo J, Farid M U, Lee E-J, et al. Fouling behavior of negatively charged PVDF membrane in membrane distillation for removal of antibiotics from wastewater [J]. J Membr Sci, 2018, 551: 12-19.
[19] Guo J, Fortunato L, Deka B J, et al. Elucidating the fouling mechanism in pharmaceutical wastewater treatment by membrane distillation [J]. Desalination, 2020, 475:114148.
[20] Guo J, Yan D Y S, Lam F L Y, et al. Self-cleaning BiOBr/Ag photocatalytic membrane for membrane regeneration under visible light in membrane distillation [J]. Chem Eng J, 2019, 378:122137.
[21] Fortunato L, Elcik H, Blantert B, et al. Textile dye wastewater treatment by direct contact membrane distillation: Membrane performance and detailed fouling analysis [J]. J Membr Sci, 2021, 636:119552.
[22] Bogler A, Bar-Zeev E. Membrane Distillation Biofouling: Impact of Feedwater Temperature on Biofilm Characteristics and Membrane Performance [J]. Environ Sci Technol, 2018, 52(17): 10019-10029.
[23] Bauer A, Wagner M, Saravia F, et al. In-situ monitoring and quantification of fouling development in membrane distillation by means of optical coherence tomography [J]. J Membr Sci, 2019, 577: 145-152.
[24] 刘  杰, 王业威, 刘  鑫, et al. 应用光学相干断层成像技术分析膜蒸馏过程中的蛋白质膜污染行为 [J]. 膜科学与技术, 2021, 41(06): 126-132.
[25] Elcik H, Fortunato L, Vrouwenvelder J S, et al. Real-time membrane fouling analysis for the assessment of reclamation potential of textile wastewater processed by membrane distillation [J]. J Water Proc Eng, 2021, 43:102296.
[26] Guo J, Deka B J, Wong P W, et al. Fabrication of robust green superhydrophobic hybrid nanofiber-nanosphere membrane for membrane distillation [J]. Desalination, 2021, 520:115314.
[27] Lee J-G, Jang Y, Fortunato L, et al. An advanced online monitoring approach to study the scaling behavior in direct contact membrane distillation [J]. J Membr Sci, 2018, 546: 50-60.
[28] Elcik H, Fortunato L, Alpatova A, et al. Multi-effect distillation brine treatment by membrane distillation: Effect of antiscalant and antifoaming agents on membrane performance and scaling control [J]. Desalination, 2020, 493:114653.
[29] Qian Y, Chen L, Zhu L. Application of the electrical localized heating method in direct contact Membrane Distillation Crystallization process [J]. Desalination, 2023, 564:116770.
[30] Liu J, Li Z, Wang Y, et al. Analyzing scaling behavior of calcium sulfate in membrane distillation via optical coherence tomography [J]. Water Res, 2021, 191:116809.
[31] Liu J, Wang Y, Li Z, et al. Flux decline induced by scaling of calcium sulfate in membrane distillation: Theoretical analysis on the role of different mechanisms [J]. J Membr Sci, 2021, 628:119257.
[32] Liu J, Wang Y, Li Z, et al. Unraveling relative roles of bulk precipitation and surface growth in developing a scaling layer in membrane distillation [J]. Desalination, 2022, 544:116133.
[33] Bauer A, Wagner M, Horn H, et al. Operation conditions affecting scale formation in membrane distillation - An in situ scale study based on optical coherence tomography [J]. J Membr Sci, 2021, 623:118989.
[34] Rezaei M, Warsinger D M, Lienhard V J, et al. Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention [J]. Water Res, 2018, 139: 329-352.
[35] Gryta M. Calcium sulphate scaling in membrane distillation process [J]. Chem Pap, 2009, 63(2): 146-151.
[36] Gilron J, Ladizansky Y, Korin E. Silica Fouling in Direct Contact Membrane Distillation [J]. Ind & Eng Chem Res, 2013, 52(31): 10521-10529.
[37] Dow N, Villalobos Garcia J, Niadoo L, et al. Demonstration of membrane distillation on textile waste water: assessment of long term performance, membrane cleaning and waste heat integration [J]. Environ Sci-Wat Res, 2017, 3(3): 433-449.
[38] Lin S, Nejati S, Boo C, et al. Omniphobic Membrane for Robust Membrane Distillation [J]. Environ Sci Tech Let, 2014, 1(11): 443-447.
[39] Gong T, Shi D, Zhu Z, et al. Polyamide Thin-Film Composite Janus Membranes Avoiding Direct Contact between Feed Liquid and Hydrophobic Pores for Excellent Wetting Resistance in Membrane Distillation [J]. ACS ES&T Water, 2022, 3(1): 176-184.
[40] Wan H, Li X, Luo Y, et al. Early monitoring of pore wetting in membrane distillation using ultrasonic time-domain reflectometry (UTDR) [J]. Water Res, 2023, 240:120081.
[41] Shao S, Shi D, Hu J, et al. Unraveling the Kinetics and Mechanism of Surfactant-Induced Wetting in Membrane Distillation: An In Situ Observation with Optical Coherence Tomography [J]. Environ Sci Technol, 2022, 56(1): 556-563.
[42] Shi D, Gong T, Qing W, et al. Unique Behaviors and Mechanism of Highly Soluble Salt-Induced Wetting in Membrane Distillation [J]. Environ Sci Technol, 2022, 56(20): 14788-14796.
[43] Christie K S S, Yin Y, Lin S, et al. Distinct Behaviors between Gypsum and Silica Scaling in Membrane Distillation [J]. Environ Sci Technol, 2020, 54(1): 568-576.
[44] Liu J, Wang Y, Li S, et al. Insights into the wetting phenomenon induced by scaling of calcium sulfate in membrane distillation [J]. Water Res, 2022, 216:118282.
[45] Wang Y, Liu J, Li Z, et al. Revisiting scaling of calcium sulfate in membrane distillation: Uncertainty of crystal-membrane interactions [J]. Water Res, 2023, 239:120060.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号